Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Journal

2017 | 3 | 8 | 3001-3010

Article title

Effect of Surface Passivation on CdxNi1-xS Thin Films Embedded with Nickel Nanoparticles

Content

Title variants

Languages of publication

EN

Abstracts

EN
Certain treatments done to binary CdS, such as incorporating Ni onto CdS produces ternary thin films may cause major optical parameters that have a number of applications including for solar cell device fabrication. In this paper, we report on the effect of surface passivation on the band gap and other related optical properties of CdNiS thin films. Thin films for CdxNi1-xS were prepared on glass substrates by chemical solution method. Effects of surface passivation and variation of the volume of nickel ions on the optical properties CdS hence obtaining CdxNi1-xS thin films was investigated. It was observed that the thin films hard an average Transmittance above 68 %, with reflectance below 25 % across UV-VIS-NIR region. A plot of (αhν) 2 versus hν gave energy band gap between 2.55–3.49 eV for as-grown samples and 2.82–3.50 eV for annealed samples. The passivated samples had band gap energy values within the range 2.85–3.12 eV. It was concluded that an increase in concentration of Cd2+ and Ni2+ ions in the reaction led to an increase the band gap while optical conductivity ranged between 3.78 1011–2.40 1012 S-1.

Journal

Year

Volume

3

Issue

8

Pages

3001-3010

Physical description

Dates

published
2017-08-16

Contributors

  • Technical University of Mombasa

References

  • Amanullah, F., Al-Shammari, S., & Al-Dhafiri, A.(2005). Co-activation effect of chlorine on the physical properties of CdS thin films prepared by CBD technique for photovoltaic applications. Physica Status Solidi (a), 202(13), 2474–2478. doi: 10.1002/pssa.200420075
  • Asogwa, P. U., Ezugwu, S. C., Ezema, F. I., & Osuji, R. U. (2009). Influence of dip time on the optical and solid state properties of as-grown Sb2S3 thin films. Chalcogenide Letters, 6(7), 287–292.
  • Bacaksiz, E., Aksu, S., Yilmaz, S., Parlak, M., & Altunbas, M. (2009). Structural, optical and electrical properties of Al-doped ZnO microrods prepared by spray pyrolysis. Thin Solid Films, 518(15), 4076–4080. doi: 10.1016/j.tsf.2009.10.141
  • Butti, K., & Perlin, J. (1981). A golden thread: 2500 years of solar architecture and technology. London: Boyars.
  • Chapin, D. M., Fuller, C. S., & Pearson, G. L. (1954). A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 25(5), 676-681. doi: 10.1063/1.1721711
  • Ezenwa, I. A., & Ekpunobi, A. J. (2011). Optical properties and band offsets of CdS/ZnS superlattice deposited by chemical bath. Journal of Non-Oxide Glasses, 3(3), 77–88.
  • Ezugwu, S. C., Ezema, F. I., & Asogwa, P. U. (2010). Synthesis and Characterization of Ternary CuSbS2 Thin Films: Effect of Deposition Time. Chalcogenide Letters, 7(5), 341–348.
  • Ezugwu, S. C., Ezema, F. I., Osuji, R. U., Asogwa, P. U., Ekwealor, A. B. C., & Ezekoye, B. A. (2009). Effect of deposition time on the band-gap and optical properties of chemical bath deposited CdNiS thin films. Optoelectronics and Advanced Materials – Rapid Communications, 3(2), 141–144.
  • Green, M. A. (2002). Third generation photovoltaics: solar cells for 2020 and beyond. Physica E –Low-dimensional Systems and Nanostructure, 14(1–2), 65-70. doi: 10.1016/S1386-9477(02)00361-2
  • Ilenikhena, P. A. (2008). Comparitive Studies of Improved Chemical Bath Deposited Copper Sulphide (CuS) and Zinc Sulphide (ZnS) Thin Films at 320K and Possible Applications. African Physical Review, 2, 59–67.
  • Isah, K. U., Hariharan, N., & Oberafo, A. (2008). Optimization of process parameters of chemical bath deposition of Cd1-xZnxS thin films. Leonardo Journal of Sciences, 12, 111–120.
  • Jeroh, M., & Okoli, D. (1969). Optical, Structural and Morphological Studies of Chemical Bath Deposited Antimony Sulphide Thin Film. Global Journal of Science Frontier Research, 12(2-A). Retrieved from https://journalofscience.org/index.php/GJSFR/article/view/369
  • Khallaf, H., Chai, G., Lupan, O., Chow, L., Heinrich, H., Park, S., & Shulte, A. (2009). In-situ boron doping of chemical-bath deposited CdS thin films. Physica Status Solidi (a), 206(2), 256–262. doi: 10.1002/pssa.200824290
  • Leon, M. A., & Kumar, S. (2007). Mathematical modeling and thermal performance analysis of unglazed transpired solar collectors. Solar Energy, 81(1), 62–75. doi: 10.1016/j.solener.2006.06.017
  • Manolache, S. A., Andronic, L., Duta, A., & Enesca, A. (2007). The influence of the deposition condition on crystal growth and on the band gap of CuSbS2 thin film absorber used for Solid State Solar Cells (SSSC). Journal of Optoelectronics and Advanced Materials, 9(5), 1269–1272.
  • Messina, S., Nair, M. T. S., & Nair, P. K. (2007). Antimony sulfide thin films in chemically deposited thin film photovoltaic cells. Thin Solid Films, 515(15), 5777–5782. doi: 10.1016/j.tsf.2006.12.155
  • Mwathe, P. M., Musembi, R., Munji, M., Odari, B., Munguti, L., Ntilakigwa, A. A., Nguu, J., Aduda, B., & Muthoka, B. (2014). Influence of surface passivation on optical properties of spray pyrolysis deposited Pd-F:SnO2. International Journal of Materials Science and Applications, 3(5), 137–142.
  • Nair, P. K., Barrios-Salgado, E., Capistran, J., Ramon, M. L., Nair, M. T., & Zingaro, R. (2010). PbSe Thin Films in All-Chemically Deposited Solar Cells. Journal of the Electrochemical Society, 157(10), 528–537. doi: 10.1149/1.3467844
  • Nair, P. K., Ocampo, M., Fernandez, A., & Nair, M. T. (1990). Solar control characteristics of chemically deposited lead sulfide coatings. Solar Energy Materials, 20(3), 235–243. doi: 10.1016/0165-1633(90)90008-O
  • Odari, B. V., Musembi, R. J., Mageto, M. J., Othieno, H., Gaitho, F., Mghendi, M., & Muramba, V. (2013). Optoelectronic Properties of F-co-doped PTO Thin Films Deposited by Spray Pyrolysis. American Journal of Materials Science, 3(4), 91-99. doi: 10.5923/j.materials.20130304.05
  • Orori, M. C. (2012). Electrical and optical characterization of CdxZn1-xS and PbS thin films for photovoltaic applications (Doctoral dissertation, Kenyatta University). Retrieved from http://ir-library.ku.ac.ke/bitstream/handle/123456789/6858/Mosiori%20Cliff.pdf?sequence=1
  • Padera, F. (2013). Measuring Absorptance (k) and Refractive Index (n) of Thin Films with the PerkinElmer Lambda 950/1050 High Performance UV-Vis/NIR Spectrometers. Retrieved from https://ru.scribd.com/document/288823820/Thin-Films
  • Paudel, N. R., & Yan, Y. (2013). Fabrication and characterization of high-efficiency CdTe-based thin-film solar cells on commercial SnO2:F-coated soda-lime glass substrates. Thin Solid Film, 549, 30–35. doi: 10.1016/j.tsf.2013.07.020
  • Reed, S. (1997). Electron Microprobe Analysis. Cambridge: Cambridge University Press.
  • Reynolds, J. A. (1979). An Overview of E-Beam Mask-Making. Solid State Technology, 22(8), 87–94.
  • Subramanian, N. S., Santhi, B., Sundareswaran, S. & Venkatakrishnan, K. S. (2006). Studies on Spray Deposited SnO2, Pd:SnO2 and F:SnO2Thin Films for Gas Sensor Applications. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 36(1), 131–135.
  • Theiss, W. (2002). Scout Thin Film Analysis Software Handbook, Hard and Software. Retrieved from http://www.wtheiss.com/?c=2&content=applications_scout
  • Wöhrle, D., & Meissner, D. (1991). Organic solar cells. Advanced Materials, 3(3), 129–138. doi: 10.1002/adma.19910030303

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-6592230a-080d-4763-b05d-d45fc425588c
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.