PL EN


2013 | 3 | 462-466
Article title

Kardiotoksyczność fruktozy – czy warto jeść miód?

Content
Title variants
Languages of publication
PL
Abstracts
References
  • Goszka G, Brymora A, Flisiński M, i wsp. Występowanie i wpływ spożycia fruktozy na przemiany metaboliczne oraz jej potencjalne ryzyko wzrostu powikłań chorób metabolicznych. Med Biol Sci 2010; 24(2): 11–15.
  • Schleip T. Fruktoza. Brak tolerancji na cukier owocowy. Warszawa: Oficyna Wydawnicza „Interspar”; 2006: 58–76.
  • Jermendy G. Intensive insulin therapy in type 2 diabetes mellitus. Diabet Care 2012; 23, 153(38): 1487–1493.
  • Busserolles J, Gueux E, Rock E. Oligofructose protects against the hypertrigliceridemic and prooxidative effects of a high fructose diet in rats. J Nut 2003; 133: 1903–190
  • Busserolles J, Gueux E, Rock E, et al. Substituting honey for refined carbohydrates protects rats from hypertriglyceridemic and prooxidative effects of fructose. J Nutr 2002; 132: 3379–3382.
  • Lee SJ, Terkeltaub RA, Kavanaugh A. Recent developments in diet and gout. Curr Opin Rheumatol 2006; 18: 193–198.
  • Bogdanov S, Jurendic T, Sieber R, et al. Honey for nutrition and heath: a review. Am J College Nutr 2008; 27: 677–689.
  • Johnson RJ, Perez-Pozo SE , Sautin YY , et al. Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes?Endocr Rev 2009; 30: 96–116.
  • Tsioufis C, Chatzis D, Vezali E, et al. The controversial role of serum uric acid in essentials hypertension: relationships with indices of target organ damage. J Hum Hypertens 2005; 19: 211–217.
  • Johnson RJ, Kivlighn SD, Kim Y-G, et al. Reappraisal of the pathogenesis and consequences of hyperurycemia in hypertension,cardiovascular disease, and renal Disease. AJKD 1999; 33(2): 225–234.
  • Arnold B, Alper Wei Chen Jr, et al. Childhood uric acid predicts adult blood pressure: the Bogalusa Heart Study. Hypertension 2005; 45: 34–38
  • Feig D, Nakagawa T, Karumanchi SA , et al. Uric acid, nephron number and the pahogenesis of essential hypertension. Kidney Int 2004; 66: 281–287.
  • Tykarski A. Ocena transportu kwasu moczowego w nefronie w nadciśnieniu tętniczym pierwotnym. Pol Arch Med Wewn 1991; 86: 167–176.
  • Kostka-Jeziorny K, Uruski P, Tykarski A. Wpływ allopurinolu na prędkość fali tętna u pacjentów z nadciśnieniem tętniczym w zależności od stosowanej terapii hipotensyjnej. Nadciśn Tętn 2009; 13(4): 246–257.
  • Jastrzębski M, Klocek M, Czarnecka D, i wsp. Kwas moczowy u chorych na pierwotne nadciśnienie tętnicze – zależności kliniczne i biochemiczne. Nadciśn Tętn 2008; 12(5): 352–358.
  • Leyva F, Anker SD, Godsland IF, et al. Uric acid in chronic heart failure: a marker of chronic inflammation. Eur Heart J 1998;19: 1814–1822.
  • Kostka-Jeziorny K, Tykarski A. Wpływ terapii hipotensyjnej na stężenie kwasu moczowego. Nadciśn Tętn 2007; 11(2): 151––163
  • Reyes A. The increase in serum uric acid concentration caused by diuretics might be beneficial in heart failure. Eur J Heart Fail 2005; 7: 461–467.
  • Kostka-Jeziorny K, Tykarski A. Losartan, allopurinol – czy są dowody, że hiperurykemia może stać się kolejnym celem terapii w prewencji ryzyka sercowo-naczyniowego u pacjentów z nadciśnieniem tętniczym. Nadciśn Tętn 2009; 13(4): 219–238.
  • Kramer CK , von Mühlen D, Jassal SK , et al. Serum uric acid levels improve prediction of incident type 2 diabetes in individuals with impaired fasting glucose: the Rancho Bernardo Study. Diabet Care 2009; 32(7): 1272–1273.
  • Ben-Dovi I, Kark J. Serum uric acid is a GFR-independent long-term predictor of acute and chronic renal insufficiency: the Jerusalem Lipid Research Clinic Cohort Study. Nephrol Dial Transplant 2011; 26(8): 2558–2566.
  • Glushakova O, Kosugi T, Johnson RJ, et al. Fructose induces the inflammatory molecule ICA M-1 in endothelial cell. J Am Soc Nephrol 2008; 19: 1712–1720.
  • Cirillo P, Gersch MS, Johnson RJ, et al. Ketohexokinase – dependent metabolism of fructose induces proinflamatory mediators in proximal tubular cell. J Am Soc Nephrol 2009; 20: 545–553.
  • Gersch MS, Mu W, Cirillo P, et al. Fructose, but not dextrose, accelerates the progression of chronic kidney disease. Am J Physiol Renal Physiol 2007; 293: F1256–F126
  • Johnson RJ, Segal MS, Sautin Y, et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 2007; 86(4): 899–906.
  • Feig D, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med 2008; 359(17): 1811–1821.
  • Chen Sz, Chang JM, Yeh SM, et al. Association of uric acid and left ventricular mass index with renal outcomes in chronic kidney disease. Am J Hypertens 2012. doi: 10.1093/ajh/hps020 First published online: December 28, 2012.
  • Tamariz L, Agarwal S, Soliman EZ , et al. Association of serum uric acid with incident atrial fibrillation (from the Atherosclerosis Risk in Communities [ARIC] Study). Am J Cardiol 2011; 108(9): 1272–1276.
  • Young Kim S, Guevara JP, Kim KM, et al. Hyperuricemia and risk of stroke: a systematic review and meta-analysis. Arthritis Rheum 2009; 15, 61(7): 885–892.
  • Noh H-L, Hu Y, Park T-S, et al. Regulation of plasma fructose and mortality in mice by the aldose reductase inhibitor lidorestat.J Pharmacol Exp Ther 2009; 328: 496–503.
  • Meller KM, Bell JR, Wendt IR, et al. Fructose modulates cardiomyocyte excitation-contraction coupling and Ca2+ handling in vitro. PLoS ONE 2011; 6: e-25204–e 252010.
  • Douard V, Rerrris RP. Regulation of the fructose transporter GLU T5 in health and disease. Am J Physiol Endocrinol Metab 2008; 295: E227–E237.
  • Chess DJ, Xu W, Khairallah R, et al. The antioxidant tempol attenuates pressure overload-induced cardiac hypertrophy and contractile dysfunction in mice fed a high-fructose diet. Am J Physiol Heart Circ Physiol 2008; 295: H2223–H2230.
  • Mellor K, Ritchie RH, Meredith G, et al. High-fructose diet elevates myocardial superoxide generation in mice in the absence of cardiac hypertrophy. Nutrition 2010; 26: 842–848.
  • Fang Y-Z, Sheng Y, Wu G. Free radicals, antioxidants, and nutrition. Nutrition 2002; 18: 872–879.
  • Shinozaki K, Ayajiki K, Nishio Y, et al. Evidence for a causal role of the rennin–angiotensin system in vascular dysfunction associated with insulin resistance. Hypertension 2004; 43: 255–262.
  • Delbosc S, Paizanis E, Maqous R. Involvement of oxidative stress and NA DPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat. Atherosclerosis 2005; 179: 43–49.
  • Nagail Y, Ichihara A, Nakano D, et al. Possible contribution of the non-proteolytic activation of prorenin to the development of insulin resistance in fructose-fed rats. Exp Physiol 2009; 94: 1016–1023.
  • Sautin YY , Nakagawa T, Zharikov S, et al. Adverse effects of the classic antioxidant uric acid in adipocytes: NA DPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol 2007; 293: C584–C596.
  • Kawasaki T, Akanuma H, Yamanouchi T. Increased fructose concentrations in blood and urine in patients with diabetes. Diabet Care 2002; 25: 353–357.
  • Reiser S, Smith C, Mertz W, et al. Indices of copper status in humans consuming a typical American diet containing either fructose or starch. Am J Clin Nutr 1985; 42: 242–251
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-68be00e2-5a6c-4ed5-a516-30b254b8a88b
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.