Journal

Article title

Authors

Content

Full texts:

Title variants

Languages of publication

Abstracts

Year

Volume

Issue

Pages

5-18

Physical description

Contributors

author

- Gran Sasso Science Institute, viale Francesco Crispi, 7 67100 L’Aquila (AQ), ITALY , imran.khan@gssi.infn.it

author

- College of Computer Science and IT, University of Dammam, Saudi Arabia, nrmohammed@ud.edu.sa

References

- ASGEIRSSON E.I., STEIN C., Divide-and-conquer approximation algorithm for vertex cover, SIAM Journal on Discrete Mathematics, 2009, 23 (3), 1261.
- BALAJI S., SWAMINATHAN V., KANNAN K., Optimization of unweighted minimum vertex cover, World Academy of Science, Engineering and Technology, 2010, 43, 716.
- CHEN J., HUANG X., KANJ I.A., XIA G., Linear FPT reductions and computational lower bounds, Proc. 36th Annual ACM Symposium on Theory of Computing, ACM, 2004, 212.
- CHVATAL V., A greedy heuristic for the set-covering problem, Mathematics of Operations Research, 1979, 4 (3), 233.
- CLARKSON K.L., A modification of the greedy algorithm for vertex cover, Information Processing Letters, 1983, 16 (1), 23.
- CORMEN T.H., LEISERSON C.E., RIVEST R.L., STEIN C., Introduction to Algorithms, 2, MIT Press, Cambridge 2001.
- AVIS D., IMAMURA T., A list heuristic for vertex cover, Operations Research Letters, 2007, 35 (2), 201.
- DA SILVA M.O., GIMENEZ-LUGO G.A., DA SILVA M.V., Vertex cover in complex networks, International Journal of Modern Physics C, 2013, 24 (11).
- DELBOT F., LAFOREST C., A better list heuristic for vertex cover, Information Processing Letters, 2008, 107 (3), 125.
- DELBOT F., LAFOREST C., Analytical and experimental comparison of six algorithms for the vertex cover problem, Journal of Experimental Algorithmics, 2010, 15, 1.
- DEMAINE E.D., FOMIN F.V., HAJIAGHAYI M., THILIKOS D.M., Subexponential parameterized algorithms on bounded-genus graphs and h-minor-free graphs, Journal of the ACM, 2005, 52 (6), 866.
- DINUR I., SAFRA S., The importance of being biased, Proc. 34th Annual ACM Symposium on Theory of Computing, ACM, 2002, 33.
- DINUR I., SAFRA S., On the hardness of approximating minimum vertex cover, Annals of Mathematics, 2005, 162 (1), 439.
- GAREY M.R., JOHNSON D.S., Computers and Intractability. A Guide to the Theory of NP- -Completeness, W.H. Freeman & Co., New York 1979, 29.
- GAJUREL S., BIELEFELD R., A simple NOVAC. Near optimal vertex cover algorithm, Procedia Computer Science, 2012, 9, 747.
- HALLDORSSON M.M., RADHAKRISHNAN J., Greed is good: Approximating independent sets in sparse and bounded-degree graphs, Algorithmica, 1997, 18 (1), 145.
- IMRAN K., HASHAM K., Modified vertex support algorithm. A new approach for approximation of mini-mum vertex cover, Research Journal of Computer and Information Technology Sciences, 2013, 1 (6), 7.
- IMRAN K., ISRAR A., MUZAMMIL K., AVSA, modified vertex support algorithm for approximation of MVC, International Journal of Advanced Science and Technology, 2014, 67, 71.
- KARP R.M., Reducibility among Combinatorial Problems, Springer, 1972.
- LI S., WANG J., CHEN J., WANG Z., An approximation algorithm for minimum vertex cover on general graphs, The Third International Symposium on Electronic Commerce and Security Workshops, ISECS, Guangzhou, P.R. China, 2010, 249.
- SANCHIS L.A., Test case construction for the vertex cover problem, Series in Discrete Mathematics and Theoretical Computer Science, DIMACS, 1994, 15, 315.
- SINGH A., GUPTA A.K., A hybrid heuristic for the minimum weight vertex cover problem, Asia- -Pacific Journal of Operational Research, 2006, 23 (2), 273.
- Vertex Cover Benchmark Instances, http://www.cs.hbg.psu.edu/txn131/vertex_cover.html, retrieved April 23, 2015.
- XU X., MA J., An efficient simulated annealing algorithm for the minimum vertex cover problem, Neuro-Computing, 2006, 69 (7), 913.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-699f4845-7563-44a0-8139-0110e9ec4e88