Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2015 | 11(18) | 89-98

Article title

Comparing changes over time for two phenomena

Authors

Content

Title variants

Languages of publication

EN

Abstracts

Statistical analyses in economics are often based on explaining the phenomena by comparing time series. The purpose of such types of analyses is to find out the similarity and schematic behavior of phenomena which appear in the data. Usual time series are compared with the use of a different similarity measure which, in accordance with the literature, could be divided into four categories. In this article, I propose a method that allows to indicate whether two time series are generated by the same stochastic processes. For this purpose, I analyze a method based on a permutation test. The idea of this test is much simpler than the tests based on theoretical distributions. I also conducted a simulation analysis based on the data generated according to different scenarios, subsequently comparing the results of that analysis.

Contributors

References

  • Berndt D.J., Clifford J. (1994). Using dynamic time warping to find patterns in time series. In KDD Workshop. Vol. 10. No. 16. Pp. 359-370.
  • Caiado J., Crato N., Peña D. (2007). Comparison of time series with unequal length. Munich Personal RePEc Archive.
  • Cieślak M., Jasiński R. (1979). Miara podobieństwa funkcji. Przegląd Statystyczny 3(4).
  • Chen L., Özsu M.T., Oria V. (2005). Robust and Fast Similarity Search for Moving Object Trajectories. In: Proceedings of the 2005 ACM SIGMOD International Conference On Management of Data. ACM. Pp. 491-502.
  • Domański C., Pekasiewicz D., Baszczyńska A., Witaszczyk A. (2014). Testy statystyczne w procesie podejmowania decyzji. Wydawnictwo Uniwersytetu Łódzkiego. Łódź.
  • Efron B., Tibshirani R.J. (1994). An Introduction to the Bootstrap. CRC Press.
  • Esling P., Agon C. (2012). Time-series data mining. ACM Computing Surveys (CSUR) 45(1). Article No. 12.
  • Frentzos E., Gratsias K., Theodoridis Y. (2007). Index-based Most Similar Trajectory Search. In: Proceedings of International Conference on Data Engineering. Pp. 816-825.
  • Good P. (2013). Permutation Tests: a Practical Guide to Resampling Methods for testing Hypotheses. Springer Science & Business Media.
  • Keogh E., Ratanamahatana C.A. (2005). Exact indexing of dynamic time warping. Knowledge and Information Systems 7(3). Pp. 358-386.
  • Kończak G. (2012). Wprowadzenie do symulacji komputerowych. Wydawnictwo Uniwersytetu Ekonomicznego.
  • Möller-Levet C.S., Klawonn F., Cho K.H., Wolkenhauer O. (2003). Fuzzy Clustering of Short Time-Series and Unevenly Distributed Sampling Points. In: Advances in Intelligent Data Analysis V. Springer. Berlin Heidelberg. Pp. 330-340.
  • Vlachos M., Kollios G., Gunopulos D. (2002). Discovering Similar Multidimensional Trajectories. In: Proceedings of 18th International Conference on Data Engineering. Pp. 673-684.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-6b8fb3b2-81e7-45e9-9d3f-5757ad3e98ce
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.