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ON SOME TESTS OF VARIANCE  
COMPONENTS FOR LINEAR MIXED MODELS 
 
Introduction 
 

Special cases of the general or the generalized mixed linear models are 
widely used in different areas including for example economics (e.g. Fay and 
Herriot, 1979), genetics (e.g. Bernardo, 1996) or statistical image analysis (e.g. 
Demidenko, 2004, chapter 12). Assumptions of the linear mixed model are as 
follows: 
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where Y and e are random vectors of sizes n × 1, X and Z are known matrices of 
sizes n × p and n × q, respectively, the random vector v is of size q × 1 and the 
vector of parameters β is of size p × 1. Hence, the variance-covariance matrix of 
Y is given by: 
 

                                  
2 ( ) ( )D = = = +TY V V δ ZGZ R ,                                (2) 

 

where δ is the vector of unknown in practice variance parameters.  
 

Moreover, if in the model (1) we additionally assume that elements of ran-
dom vectors e and v are independent with zero expected values and variances 

2
eσ  and 2

vσ , respectively, then 2 2( ) e n nD σ ×= =e R I  and 
2 2( ) v q qD σ ×= =v G I , 

where I is the identity matrix. In this case, the variance-covariance matrix (2) 
simplifies to the following formula: 
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2 2 2( ) ( ) v e n nD σ σ ×= = = +TY V V δ ZZ I ,                        (3) 

 

where 2 2 T

e vσ σ⎡ ⎤= ⎣ ⎦δ  . 
 

If we estimate δ using REML − Restricted Maximum Likelihood Method 
(Jiang, 1996), the vector of estimators will be denoted by ˆ

REMLδ . When ML – 

Maximum Likelihood is used, the vector of estimators will be denoted by ˆ
MLδ . 

In the paper the classic and permutation tests of variance components are 
studied including the situation when the assumption of normality of random ef-
fects and random components is not met. 
 

1. Tests of variance components 
 

In the section we will introduce classic tests: log-likelihood ratio test and 
Wald test. In both tests we consider hypotheses: 2

0 : 0vH σ = , 2
1 : 0vH σ >  (e.g. 

Biecek, 2012, p. 161). If the null hypothesis is true, it means that we should not 
consider a model which belongs to the class of the General Linear Mixed Model, 
but the model without the random effect. Because the random effect implies 
some non-zero covariances in the variance-covariance matrix, it implies the lack 
of some correlations assumed in the mixed model. For example, if the random 
effect is subpopulation-specific it means that we assume some correlations be-
tween the random variables within the subpopulation.  

When we consider null hypothesis 2
0 ,0: vH σσ ∈Θ , where Θσ,0 is a subspace 

of Θσ which is parameter space of the variance components, the test statistic for 
the log-likelihood ratio test (LRT) has the following form (e.g. Verbecke, 
Molenbergs, 2000, pp. 65-66): 
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where 2
( ,0)v MLσ  and 2

( )v MLσ  are maximum likelihood estimates obtained from 

maximizing log-likelihood function over space Θσ,0 and Θσ, respectively. Ac-
cording to the classic likelihood theory (under some regularity conditions), sta-
tistic (4) has χ2 distribution with s − p degrees of freedom which is difference of 
dimensions of Θσ and Θσ,0. This test is conservative (Stram and Lee 1994,  
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p. 1176). Self and Liang (1994), likewise Stram and Lee (1994) explain that p-
value based on 2

s pχ −  obtained in this test is higher than it should be.  

Second classic test is Wald test. In this case the test statistic is a ratio of es-
timator 2ˆvσ  and estimator of its asymptotic standard error, what can be written as 

follows: 
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where 2 2ˆ ˆ( )vD σ  can be obtained as appropriate element of the diagonal of the es-

timated inverse of Fisher information matrix.  
 

Based on the classic likelihood theory and when some regularity conditions 
are fulfilled, distribution of ML and REML estimators of 2

vσ  can be approxi-

mated by normal distribution with mean vector 2
vσ  and covariance matrix given 

by inverse Fisher information matrix (Verbecke, Molenbergs, 2000, p. 64).  
Both classic test presented in section allow testing the same hypotheses and have 

similar properties (McCulloch, Searle, 2001, p. 148; Bishop et al., 1975, sec. 14.9). 
 

2. Permutation tests 
 

In this section we present three permutation test: permution test of variance 
components based on log-likelihood, studied i.a. by Biecek (2012), and permuta-
tion versions of two classic tests showed in previous section. 

Permutation procedure for each of these tests we can divide into four steps. 
In the first stage of permutation test based on likelihood we should calculate  
L0 – test statistic (log-likelihood) for original data. Next we generate π*,b which 
is permutation of vector [1 2 … n], where n is sample size and b is the iteration 
number. In the third phase, the permutation of grouping variable is made and 
log-likelihood is calculated for data with this permutation ( *,

0
bL ). This and the 

previous step are repeated B times (e.g. Biecek, 2012, p. 177). In the last phase, 
p-value is calculated as the fraction of the cases where log-likelihood for model 
with permutation is larger than for the model under original data: 
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If the permutation version of the log-likelihood ratio (LRT) test is consid-
ered, at beginning we have to compute LRT0 – value of the LRT statistic (4) for 
original data. In the second stage, we generate π*,b permutation of the vector  
[1 2 … n]. In the next phase we calculate permutation of grouping variable and 
we compute test statistic for the data with the permutation (denoted by *,

0
bLRT ). 

The second and the third phase are repeated B times, as in the previous test.  
In the last phase we calculate p-value: 
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as the fraction of cases where LRT statistic for the model under the original data 
is smaller than for the model under the data with the permutation. 

The last permutation test is the permutation version of the classic Wald test. 
Similarly, like in other permutation tests, firstly we compute test statistic (5) for origi-
nal data which is denoted by W0. In the second stage we generate π*,b as a permuta-
tion of vector [1 2 … n]. In the third phase we compute permutation of the grouping 
variable and the value of the test statistic for data with permutation ( *,

0
bW ). The sec-

ond and the third phase are repeated B times. In the last phase we calculate p-value: 
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It is fraction of cases when the Wald test statistic for the model under data 
with the permutation is larger than for the model without the permutation. 
 

3. Simulation study 
 

In the section we present results Monte Carlo simulation study which 
widely used to assess properties of different methods (e.g. Białek, 2014; Gamrot, 
2013; Krzciuk, Mierzwa i Wywiał, 2003). It is prepared using R software (R De-
velopment Core Team, 2013). Similarly to Kończak (2010, 2012) we will com-
pare properties of classic and permutation tests. Using data on revenues from 
municipal taxation in 284 Swedish municipalities, presented in Särndal, Swens-
son, Wretman (1992), we analyze properties of all test presented in this paper. 
This data set is available in R program in package sampling. In the paper we 
study five variables from this data set: 
− RMT85 – revenues from municipal taxation in 1985 (millions of kronor), 
− P75 – population in 1985 in municipalities in thousands,  
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− REV84 – real estate values in 1984 (millions of kronor), 
− CL – clusters indicator, 
− REG – geographic region indicator. 

In this data set country is divided into eight regions and fifty clusters.  
In this study we consider five types of models: 

 

                              0 1 1 2 2id id id d idY X X v eβ β β= + + + + ,                          (9) 

                             ( )0 1 1 2 2id d id id idY v X X eβ β β= + + + + ,                       (10) 

                             ( )0 1 1 2 2id id d id idY X v X eβ β β= + + + + ,                       (11) 

                             ( )1 1 2 2id d id id idY v X X eβ β= + + + ,                        (12) 

                             ( )1 1 2 2id id d id idY X v X eβ β= + + + .                        (13) 
 

where i = 1, 2, … , n (where n is the sample size), d = 1, 2, … , D (the popula-
tion is divided into D subpopulations). Response variable in all of the models is 
RMT85 and auxiliary variables – P75 and REV84. We take into account classifi-
cations by two grouping variables – CL and REG, what means that we analyze 
ten models. 
 

Model selection is based on the special cases of the General Information 
Criterion – Akkaike Information Cirterion (AIC) and Bayesian Information Cri-
terion (BIC). General information Criterion has a form: 
 

                                  ( ) ( )2lnGIC M L M h M= − + ,                                 (14) 
 

where L is likelihood for analyzed model M and ⏐M⏐ is number of parameters 
of model M. In the Akkaike criterion parameter h is 2 and in the Bayesian crite-
rion – ln(n), where n it is the number of observations. We obtained smallest val-
ues of both information criteria for the model (10), where grouping variable is 
the indicator of cluster (CL). For the model, based on the results obtained by 
Żądło (2006), we have 
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which may be used in the formula (5) to obtain the value of statistics of Wald test. 
In the simulation study we perform two experiments. In the first experiment 

we generate data based on the model:  
 

                                     0 1 1 2 2id id id idY X X eβ β β= + + +                                  (16) 
– linear models with two auxiliary variables where values of β0, β1, β2, and 2

eσ  
are obtained based on the real data under assumption of (16). The model does 
not contain the random effect. Hence, we analyze type I error – fraction of cases 
when we reject true null hypothesis.  

In the second experiment we generate data based on the model (10), where 
values of β0, β1, β2, 

2
vσ  and 2

eσ  are obtained based on the real data. In this part 
we consider type II error – fraction of cases when we cannot reject H0. We con-
sider two variants of both experiments. In the first one random components are 
generated from normal distribution (variant “a”), in the second (variant “b”) 
from shifted exponential distribution, in both cases expected values are 0, vari-
ances – 2

vσ  and 2
eσ . 

In the simulation study the number of iterations is 1000 and the number of 
permutations within each iteration is 500. Firstly, we analyze type I error. Re-
sults for variant “a” are presented in the Table 1 and for variant “b” in the Table 
2. Although, in the case of variant “b” (random effects and random components 
are generated from shifted exponential distribution) and classic test should not 
be used, their properties are acceptable. In both variants, classic tests were con-
servative (values of type I errors are smaller than assumed level o significance) 
and all presented permutation test – anticonservative (values of type I errors are 
larger than assumed level of significance). 
 

Table 1 
 

Summary of experiment 1(a) − type I error 
 

Test 
Assumed level of significance (α) 

α = 0,01 α = 0,05 α = 0,1 

LRT 0 0 0 
Wald test 0 0,001 0,003 

Permutation lnL test 0,014 0,069 0,127 
Permutation LRT 0,016 0,063 0,125 
Permutation Wald test 0,345 0,517 0,588 
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Table 2 
 

Summary of experiment 1(b) − type I error 
 

Test 
Assumed level of significance (α) 

α = 0,01 α = 0,05 α = 0,1 

LRT 0,002 0,002 0,003 
Wald test 0,004 0,017 0,032 

Permutation lnL test 0,012 0,062 0,118 
Permutation LRT 0,011 0,064 0,117 
Permutation Wald test 0,412 0,556 0,631 

 
In the first experiment we obtained very high values of type I errors for the 

Wald test. It may result from the fact that using the Wald test we assume normal-
ity of the test statistic while the possible values of the parameter ( 2

vσ ) are non-
negative. It is a serious problem especially if the true unknown value of the pa-
rameter is very close to the border of the parameter space. Therefore, the proper-
ties of the Wald test will not be studied in the second simulation study. 
 

Table 3 
 

Summary of experiment 2(a) − type II error 
 

Test 
Assumed level of significance (α) 

α = 0,01 α = 0,05 α = 0,1 

LRT 0 0 0 
Wald test 0 0 0 

Permutation lnL test 0 0 0 
Permutation LRT 0 0 0 

 
Table 4 

 

Summary of experiment 2(b) − type II error 
 

Test 
Assumed level of significance (α) 

α = 0,01 α = 0,05 α = 0,1 

LRT 0 0 0 
Wald test 0 0 0 

Permutation lnL test 0 0 0 
Permutation LRT 0 0 0 

 
In the second experiment we consider type II error. Results for variant “a” 

are presented in the Table 3 and for variant “b” in the Table 4. Although, in the 
case of variant “b” (random effects and random components are generated from 
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shifted exponential distribution) and classic test should not be used, values of 
type II error in the simulation (using value of 2

vσ  obtained based on real data) 
are equal zero. For classic and permutation tests values of type II error are for all 
of the considered cases are equal zero or very close to zero. Therefore, values of 
the power of the tests are 1 or very close to 1.  
 

Conclusions 
 

In the paper three permuation test of variance components are studied – one 
based on the log-likelihood, other two are permutation versions of classic tests. 
Their properites are considered in the Monte Carlo simulation study based on the 
real data on revenues of municipal taxations in Swedish municipalities. The re-
sults may be very useful for practitioners who can use permutations test without 
testing assumptions which must be met in the case of classic tests. 
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Summary 
 

In the paper three permutation tests of significance of variance components in the 
linear mixed model are presented. Two of them are permutation versions of classic tests. 
The third one is based on log-likelihood. In the Monte Carlo simulation studies proper-
ties of the permutation tests are compared with properties of the classic likelihood ratio 
test and Wald test. 


