PL EN


Journal
2019 | 3 (80) | 34-44
Article title

Playing with Benford's Law

Content
Title variants
Languages of publication
EN
Abstracts
EN
This paper presents a classroom experiment, the simulations, and a research which familiarize the students with the Benford’s Law. This law is widely used in a tax fraud detecting procedures. This paper shows that: i) the Benford’s Law can be useful in extending the simple perception of the probability which is presented at the lectures concerning the risk, ii) can be an excellent example of using data processing for the classroom tasks, iii) by the experience of the fraud detecting technique the students might change their attitude to cheating. The experiment and the prepared R codes can be used in the numerous courses, such as accounting, applied microeconomics, and quantitative methods.
Journal
Year
Issue
Pages
34-44
Physical description
Contributors
  • Uniwersytet Warszawski
  • Uniwersytet Warszawski
References
  • Benford, F. (1938). The Law of Anomalous Numbers. Proceedings of the American Philosophical Society, 78(4), 551-572. http://www.jstor.org/stable/984802
  • Berger, A., & Hill, T. P. (2011). Benford's law strikes back: no simple explanation in sight for mathematical gem. The Mathematical Intelligencer, 33(1), 85-91.
  • Berger, A., & Hill, T. P. (2015). An introduction to Benford's law. Princeton, NJ: Princeton University Press.
  • Carslaw, C. A. P. N. (1988). Anomalies in Income Numbers: Evidence of Goal Oriented Behavior. The Accounting Review, 63(2), 321-327. http://www.jstor.org/stable/info/248109
  • Cho, W. K. T., & Gaines, B. J. (2007). Breaking the (Benford's) law: Statistical fraud detection in campaign finance. American Statistician, 61(3), 218-223. DOI: https://doi.org/10.1198/000313007X223496
  • Drake, P. D., & Nigrini, M. J. (2000). Computer assisted analytical procedures using Benford's Law. Journal of Accounting Education, 18(2), 127-146. DOI: https://doi.org/10.1016/S0748-5751(00)00008-7
  • Durtschi, C., Hillison, W., & Pacini, C. (2004). The Effective Use of Benford's 'Benford's s Law to Assist in Detecting Fraud in Accounting Data. Journal of Forensic Accounting, 5(1), 17-34.
  • Ettredge, M. L., & Srivastava, R. P. (1999). Using Digital Analysis to Enhance Data Integrity. Issues in Accounting Education, 14(4), 675-690. DOI: https://doi.org/10.2308/iace.1999.14.4.675
  • Falk, R., & Konold, C. (1997). Making sense of randomness: implicit encoding as a basis for judgment. Psychological Review, 104(2), 301-318. DOI: 10.1037/0033-295X.104.2.301
  • Fewster, R. M. (2009). A simple explanation of Benford's law. American Statistician, 63(1), 26-32. DOI: https://doi.org/10.1198/tast.2009.0005
  • Frank, R., & Cartwright, E. (2013). Microeconomics and behaviour. McGraw Hill.
  • Furlan, L. (1948). Das Harmoniegesetz der Statistik: Eine Untersuchungüber die metrische Interdependenz der sozialen Erscheinungen. Basel, Schwitzerland: Verlag für Recht und Gesellschaft.
  • Gabaix, X. (2016). Power Laws in Economics: An Introduction. Journal of Economic Perspectives, 30(1), 185-206. DOI: https://doi.org/10.1257/jep.30.1.185
  • Gartner. (2015). APM - Gartner IT Glossary. Retrieved from http://www.gartner.com/it-glossary/application-performance-monitoring-apm/
  • Gauvrit, N., Houillon, J. C., & Delahaye, J. P. (2017). Generalized Benford's law as a lie detector. Advances in Cognitive Psychology, 13(2), 121-127. DOI: https://doi.org/10.5709/acp-0212-x
  • Geyer, D. (2010). Detecting Fraud in Financial Data Sets. Journal of Business & Economics Research, 8(7), 75-83.
  • Gigerenzer, G. (2015). Calculated risks: How to know when numbers deceive you. New York: Simon and Schuster.
  • Giles, D. E. (2007). Benford's law and naturally occurring prices in certain ebaY auctions. Applied Economics Letters, 14(3), 157-161. DOI: https://doi.org/10.1080/13504850500425667
  • Henselmann, K., Scherr, E., & Ditter, D. (2012). Applying Benford's Law to individual financial reports: An empirical investigation on the basis of SEC XBRL filings. Working papers in accounting valuation auditing. Retrieved from https://ideas.repec.org/p/zbw/fauacc/20121r.html
  • Hill, T. (1995). A statistical derivation of the significant-digit law. Statistical Science, 10(4), 354-363. DOI: 10.1214/ss/1177009869
  • Ioannidis, J., & Doucouliagos, C. (2013). What's to know about the credibility of empirical economics? Journal of Economic Surveys, 27(5), 997-1004. DOI: https://doi.org/10.1111/joes.12032
  • Janvrin, D. J., & Weidenmier Watson, M. (2017). "Big Data": A new twist to accounting. Journal of Accounting Education, 38, 3-8. DOI: https://doi.org/10.1016/j.jaccedu.2016.12.009
  • Joenssen, D. W. (2015). Benford's Tests: statistical tests for evaluating conformity to Benford's law. Computer Software. https://cran.r-project.org/web/packages/BenfordTests/index.html
  • Joyner, E. (2011). Detecting and preventing fraud in financial institutions. SAS Global Forum 2011, 1-16. Retrieved from http://support.sas.com/resources/papers/proceedings11/029-2011.pdf
  • Kiuila, O. (2018). Decarbonisation perspectives for the Polish economy. Energy Policy, 118, 69-76. DOI: https://doi.org/10.1016/j.enpol.2018.03.048
  • Ley, E. (1996). On the Peculiar Distribution of the U.S. Stock Indexes' Digits. American Statistician, 50(4), 311-313. DOI: https://doi.org/10.1080/00031305.1996.10473558
  • McConnell, C. R., Brue, S. L., Flynn, S. M., (2014). Microeconomics. McGraw-Hill Education; 20th edition.
  • Michalski, T., & Stoltz, G. (2013). Do countries falsify economic data strategically? Some evidence that they might. Review of Economics and Statistics, 95(2), 591-616. https://doi.org/10.1162/REST_a_00274
  • Newcomb, S. (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics, 4(1), 39-40.
  • Nigrini, M. (1999). I've Got Your Number: How a mathematical phenomenon can help CPAs uncover fraud and other irregularities. Journal of Accountancy, 187(5), 79-83. Retrieved from http://www.journalofaccountancy.com/Issues/1999/May/nigrini
  • Nigrini, M. J. (1996). A Taxpayer Compliance Application of Benford's Law. Journal of the American Taxation Association, 18(1), 72-91. Retrieved from https://www.econbiz.de/Record/a-taxpayer-compliance-application-of-benford-s-law-nigrini-mark-john/10001202885
  • Nigrini, M. J. (2012). Forensic Analytics: Methods and Techniques for Forensic Accounting Investigations. DOI: https://doi.org/10.1002/9781118386798
  • Noether, G. E. (1963). Note on the Kolmogorov statistic in the discrete case. Metrika: International Journal for Theoretical and Applied Statistics, 7(1), 115-116. DOI: https://doi.org/10.1007/BF02613966
  • Norton, M. I., & Ariely, D. (2011). Building a better America-one wealth quintile at a time. Perspectives on Psychological Science, 6(1), 9-12. DOI: https://doi.org/10.1177/1745691610393524
  • Paul, L. A. (2013). Teaching Guide for Transformative Experience. Retrieved from https://lapaul.org/papers/teaching-guide-for-transformative-experience.pdf
  • Sambridge, M., & Tkalčic, H. (2010). Benford's law in the natural sciences. Geophysical Research Letters, 37(22). DOI: https://doi.org/10.1029/2010GL044830
  • Sambridge, M., Tkalčić, H. & Arroucau, P. (2011). Benford's Law of First Digits: From Mathematical Curiosity to Change Detector. Asia Pacific Mathematics Newsletter, 1(4), 1-5.
  • Simkin, M. G. (2010). Using Spreadsheets and Benford's Law to Test Accounting Data. ISACA Journal, 1, 47-52.
  • Stephens, M. A. (1970). Use of the Kolmogorov-Smirnov, Cramer-Von Mises and Related Statistics Without Extensive Tables. Journal of the Royal Statistical Society. Series B (Methodological), 32(1), 115-122. DOI: https://doi.org/10.1111/j.2517-6161.1970.tb00821.x
  • Varian, H. R. (1972) Benford's Law. The American Statistician, 26, 65-66.
  • Varian, H. R. (2014). Intermediate Microeconomics: A Modern Approach: Ninth International Student Edition. New York: WW Norton & Company.
  • Watt, R. (2011). The Microeconomics of Risk and Information. New York: Palgrave Macmillan.
  • Xie, Y. (2013). Animation: An R Package for Creating Animations and Demonstrating Statistical Methods. Journal of Statistical Software, 53(1). DOI: https://doi.org/10.18637/jss.v053.i01
  • Yang, S., & Wei, L. (2010). Detecting money laundering using filtering techniques: A multiple-criteria index. Journal of Economic Policy Reform, 13(2), 159-178. DOI: https://doi.org/10.1080/17487871003700796
  • Zipf, G. (1936). The Psychobiology of Language. London: Routledge.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-73342d66-f5b1-45de-91d2-88dcaaab4f6e
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.