Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2021 | 31 | 2 | 123-145

Article title

Computing power indices for weighted voting games via dynamic programming

Content

Title variants

Languages of publication

EN

Abstracts

EN
We study the efficient computation of power indices for weighted voting games using the para- digm of dynamic programming. We survey the state-of-the-art algorithms for computing the Banzhaf and Shapley–Shubik indices and point out how these approaches carry over to related power indices. Within a unified framework, we present new efficient algorithms for the Public Good index and a recently proposed power index based on minimal winning coalitions of the smallest size, as well as a very first method for computing the Johnston indices for weighted voting games efficiently. We introduce a software package providing fast C++ implementations of all the power indices mentioned in this article, discuss computing times, as well as storage requirements.

Year

Volume

31

Issue

2

Pages

123-145

Physical description

Contributors

  • Fakultät Informatik, Hochschule Kempten, Bahnhofstr. 61, 87435 Kempten, Germany
  • Institute of Economics, Centre for Economic and Regional Studies, Tóth Kálmán u. 4, H-1097 Budapest, Hungary
  • Department of Finance, Budapest University of Technology and Economics, Magyar tudósok körútja 2, H-1112 Budapest, Hungary
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
author
  • Fakultät Informatik, Hochschule Kempten, Bahnhofstr. 61, 87435 Kempten, Germany
author
  • Fakultät Informatik, Hochschule Kempten, Bahnhofstr. 61, 87435 Kempten, Germany
author
  • Fakultät Informatik, Hochschule Kempten, Bahnhofstr. 61, 87435 Kempten, Germany
author
  • Fakultät Informatik, Hochschule Kempten, Bahnhofstr. 61, 87435 Kempten, Germany
author
  • Fakultät Informatik, Hochschule Kempten, Bahnhofstr. 61, 87435 Kempten, Germany
author
  • Fakultät Informatik, Hochschule Kempten, Bahnhofstr. 61, 87435 Kempten, Germany

References

  • ALGABA E., BILBAO J.M., GARCIA J.F., LÓPEZ J., Computing power indices in weighted multiple majority games, Math. Soc. Sci., 2003, 46 (1), 63–80.
  • ALGABA E., BILBAO J.M., FERNÁNDEZ J.R., The distribution of power in the European Constitution, Eur. J. Oper. Res., 2007, 176 (3), 1752–1766.
  • ÁLVAREZ-MOZOS M., FERREIRA F., ALONSO-MEIJIDE J.M., PINTO A.A., Characterizations of power indices based on null player free winning coalitions, Optimization, 2015, 64 (3), 675–686.
  • BANZHAF J.F., Weighted voting doesn’t work: A mathematical analysis, Rutgers Law Rev., 1965, 19, 317.
  • BERGHAMMER R., BOLUS S., RUSINOWSKA A., DE SWART H., A relation-algebraic approach to simple games, Eur. J. Oper. Res., 2011, 210 (1), 68–80.
  • BERGHAMMER R., BOLUS S., On the use of binary decision diagrams for solving problems on simple games, Eur. J. Oper. Res., 2012, 222 (3), 529–541.
  • BERTINI C., GAMBARELLI G., STACH I., A Public Help index, [In:] M. Braham, F. Steffen (Eds.), Power, freedom, and voting, Springer, Berlin 2008, 83–98.
  • BERTINI C., STACH I., Banzhaf voting power measure, [In:] K. Dowding (Ed.), Encyclopedia of Power, SAGE, Los Angeles 2011, 54.
  • BERTINI C., FREIXAS J., GAMBARELLI G., STACH I., Comparing power indices, Int. Game Theory Rev., 2013, 15 (2), 1340004.
  • BERTINI C., STACH I., On public values and power indices, Dec. Mak. Manuf. Serv., 2015, 9 (1), 9–25.
  • BERTINI C., MERCIK J., STACH I., Indirect control and power, Oper. Res. Dec., 2016, 26 (2), 7–30.
  • BILBAO J.M., FERNANDEZ J.R., JIMÉNEZ LOSADA A., LOPEZ J.J., Generating functions for computing power indices efficiently, Top, 2000, 8 (2), 191–213.
  • BOLUS S., Power indices of simple games and vector-weighted majority games by means of binary decision diagrams, Eur. J. Oper. Res., 2011, 210 (2), 258–272.
  • BOLUS S., A QOBDD-based approach to simple games, PhD thesis, Christian-Albrechts Universität Kiel, Kiel 2012.
  • CHAKRAVARTY S.R., MITRA M., SARKAR P., A Course on Cooperative Game Theory, Cambridge University Press, Cambridge 2015.
  • DEEGAN J., PACKEL E.W., A new index of power for simple n-person games, Int. J. Game Theory, 1978, 7 (2), 113–123.
  • DUBEY P., SHAPLEY L.S., Mathematical properties of the Banzhaf power index, Math. Oper. Res., 1979, 4 (2), 99–131.
  • FELSENTHAL D.S., A well-behaved index of a priori p-power for simple n-person games, Homo Oecon., 2016, 33 (4), 367–381.
  • https://gmplib.org/ (URL consulted in November 2020).
  • HOLLER M.J., Forming coalitions and measuring voting power, Pol. Studies, 1982, 30 (2), 262–271.
  • HOLLER M.J., RUPP F., Power in networks. A PGI analysis of Krackhardt’s kite network, Springer Lecture Notes in Computer Science 11890, 2019, 21–34.
  • JOHNSTON R.J., On the measurement of power. Some reactions to Laver, Environ. Plan. A, 1978, 10 (8), 907–914.
  • KÖNIG T., BRÄUNINGER T., The inclusiveness of European decision rules, J. Theor. Pol., 1998, 10 (1), 125–142.
  • KÓCZY L.Á., Beyond Lisbon. Demographic trends and voting power in the European Union Council of Ministers, Math. Soc. Sci., 2012, 63 (2), 152–158.
  • KÓCZY L.Á., Power indices when players can commit to reject coalitions, Homo Oecon., 2016, 33 (1–2), 77–91.
  • KURZ S., Computing the power distribution in the IMF, arXiv preprint, Comp. Sci. Game Theeory, 2016, arXiv: 1603.01443.
  • LUCCHETTI R., RADRIZZANI P., Microarray data analysis via weighted indices and weighted majority games, [In:] F. Masulli, L.E. Peterson, R. Tagliaferri (Eds.), International meeting on computational intelligence methods for bioinformatics and biostatistics, Springer, Berlin 2009, 179–190.
  • MATSUI T., MATSUI Y., A survey of algorithms for calculating power indices of weighted majority games, J. Oper. Res. Soc. Japan, 2000, 43 (1), 71–86.
  • MATSUI Y., MATSUI T., NP-completeness for calculating power indices of weighted majority games, Theor. Comp. Sci., 2001, 263 (1–2), 305–310.
  • MERCIK J., LOBOS K., Index of implicit power as a measure of reciprocal ownership, Springer Lecture Notes in Computer Science 9760, 2016, 128–140.
  • MERCIK J., STACH I., On measurement of control in corporate structures, Springer Lecture Notes in Computer Science 11290, 2018, 64–79.
  • NEVISON H., Structural power and satisfaction in simple games, [In:] S.J. Brams, A. Schotter, G. Schwödiauer (Eds.), Appl. Game Theory, Phys., Heidelberg 1979, 39–57.
  • SHAPLEY L.S., SHUBIK M., A method for evaluating the distribution of power in a committee system, Amer. Pol. Sci. Rev., 1954, 48 (3), 787–792.
  • STACH I., Shapley–Shubik index, [In:] K. Dowding (Ed.), Encyclopedia of Power, SAGE, Los Angeles 2011, 603–606.
  • TANENBAUM P., Power in weighted voting games, Math. J., 1997, 7, 58–63.
  • UNO T., Efficient computation of power indices for weighted majority games, Springer Lecture Notes in Computer Science 7676, 2012, 679–689.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-73b2f1fc-ff54-40f6-aaf1-16c61b10c32f
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.