PL EN


2013 | 23 | 4 | 21-38
Article title

Multi-period portfolio optimization of power generation assets

Selected contents from this journal
Title variants
Languages of publication
EN
Abstracts
EN
The liberalization and deregulation of the energy industry in the past decades have been significantly affected by changes in the strategies of energy firms. The traditionally used approach of cost minimization was no longer sufficient, risk and market behavior could no longer be ignored and the need for more appropriate optimization methods for uncertain environments was increased. Meanvariance portfolio (MVP) theory is one of the more advanced financial methods that has been successfully applied to the energy sector. Unfortunately, this static approach is inadequate for studying multi-stage investment decision problems. The methodology proposed in this paper considering power generation assets is based on the model introduced by Mulvey, who suggests a reallocation approach using the analysis of various scenarios. The adoption of this methodology to power generation assets allows us to capture the impact of variations in the economic and technical parameters considered. The results of our study show that the application of a model for selection of multi-period portfolio can indeed improve the decision making process. Especially for the case of adding new investments to the portfolio mix, this rebalancing model captures new entries very well.
Year
Volume
23
Issue
4
Pages
21-38
Physical description
Contributors
  • Institute for Future Energy Consumer Needs and Behavior (FCN), School of Business and Economics/ E.ON Energy Research Center, RWTH Aachen University, Aachen, Germany, Mathieustraße 10, Main Building, D-52074 Aachen, Germany, bglensk@eonerc.rwth-aachen.de
  • Institute for Future Energy Consumer Needs and Behavior (FCN), School of Business and Economics/ E.ON Energy Research Center, RWTH Aachen University, Aachen, Germany, Mathieustraße 10, Main Building, D-52074 Aachen, Germany, RMadlener@eonerc.rwth-aachen.de
References
  • AWERBUCH S., BERGER M., Applying portfolio theory to EU electricity planning and policy-making, IEA/EET Working Paper, EET/2003/03, 2003.
  • BAR-LEV D., KATZ S., A portfolio approach to fossil fuel procurement in the electric utility industry, Journal of Finance, 1976, 31 (3), 933–947.
  • BAZILIAN M., ROQUES F., Analytical Methods for Energy Diversity & Security – Portfolio Optimization in Energy Sector: A Tribute to the work of Dr Shimon Awerbuch, Elsevier, 2008.
  • BORCHERT J., SCHEMM R., Einsatz der Portfoliotheorie im Asset Allokations-Prozess am Beispiel eines fiktiven Anlageraums von Windkraftstandorten, Zeitschrift für Energiewirtschaft, 2007, 31 (4), 311–322.
  • BRODT A., A dynamic balance sheet management model for a Canadian chartered bank, Journal of Banking and Finance, 1978, 2 (3), 221–241.
  • ELTON E., GRUBER M., The multi-period consumption investment problem and single period analysis, Oxford Economics Papers, 1974, 26 (2), 289–301.
  • ELTON E., GRUBER M., On the optimality of some multi-period portfolio selection criteria, Journal of Business, 1974, 47 (2), 231–243.
  • E.ON, <www.eon-kraftwerke.com) (4 January 2013).
  • ERDMANN G., ZWEIFEL P., Energieökonomik. Theorie und Anwendungen, Springer, Berlin 2008.
  • European Energy Exchange, <www.eex.com> (10 December 2012).
  • Federal Statistical Office, <www.destatis.de> (10 December, 2012).
  • FLETEN S.E., WALLACE W., ZIEMBA W.T., Hedging electricity portfolios via stochastic programming, IMA Volumes in Mathematics and its Applications, 2002, 128, 71–94.
  • FRAUENDORFER K., SIEDE H., Portfolio selection using multistage stochastic programming, Central European Journal of Operations Research, 1999, 7 (4), 277–289.
  • GLENSK B., MADLENER R., CO2-Free Power Generation from Nuclear Energy and Renewables: Perceived and Actual Risks, E.ON Energy Research Center Series, RWTH Aachen University, 2011, 3 (6).
  • GLENSK B., MADLENER R., Dynamic Portfolio Optimization for Power Generation Assets, [in:] Operations Research Proceedings 2012, S. Helber, M. Breitner, D. Rösch, C. Schön, J.-M. Graf von der Schulenburg, P. Sibbertsen, M. Steinbach, S. Weber, A. Wolter (Eds.), Springer, Cham 2014, 177–182.
  • GLENSK B., MADLENER R., Fuzzy Portfolio Optimization for Power Generation Assets, FCN Working Paper No. 10/2010, RWTH Aachen University, August 2010.
  • GÜLPINAR N., RUSTEM B., Worst-case decisions for multi-period mean-variance portfolio optimization, European Journal of Operational Research, 2007, 183 (3), 981–1000.
  • HASCHE B., BARTH R., SWIDER D.J., Verteilte Erzeugung im deutschen Energiesystem, Universität Stuttgart, Institut für Energiewirtschaft und Rationelle Energieanwendung, Stuttgart 2006.
  • HATAMI A.R., SEIFI H., SHEIKH-EL-ESLAMI M.K., Optimal selling price and energy procurement strategies for a retailer in an electricity market, Electric Power Systems Research, 2009, 79, 246–254.
  • HOCHREITER R., PFLUG G., WOZABAL D., Multi-stage stochastic electricity portfolio optimization in liberalized energy markets, IFIP International Federation for Information Processing, Springer, 2006, 199, 219–226.
  • IEA, Projected costs of generating electricity, IEA/OECD, Paris 2005.
  • IEA Statistics: Energy Prices and Taxes, IEA/OECD, Paris 2008.
  • Intercontinental Exchange, <www.theice.com> (11 December 2012).
  • KETTUNEN J., SALO A., BUNN D.W., Optimization of electricity retailer’s contract portfolio subject to risk preferences, IEEE Transactions on Power Systems, 2010, 25 (1), 117–128.
  • KLEINDORFER P., LI L., Multi-Period VaR-Constrained Portfolio Optimization with Application to the Electric Power Sector, The Energy Journal, 2005, 26 (1), 1–25.
  • KONSTANTIN P., Praxisbuch Energiewirtschaft, Springer, Berlin 2009.
  • KORHONEN A., A dynamic bank portfolio planning model with multiple scenarios, multiple goals and changing priorities, European Journal of Operational Research, 1987, 30 (1), 13–23.
  • MADLENER R., Portfolio Optimization of Power Generation Assets, [in:] Handbook of CO2 in Power Systems, Q.P. Zheng, S. Rebennack, P.M. Pardalos, M.V.F. Pereira, N.A. Iliadis (Eds.), Springer, Berlin 2012, 275–296.
  • MADLENER R., GLENSK B., Portfolio Impact of New Power Generation Investments of E.ON in Germany, Sweden and the UK, FCN Working Paper, No. 17/2010, RWTH Aachen University, November 2010.
  • MADLENER R., GLENSK B., RAYMOND P., Investigation of E.ON’s Power Generation Assets by Using Mean-Variance Portfolio Analysis, FCN Working Paper No. 12/2009, RWTH Aachen University, November 2009.
  • MADLENER R., WENK C., Efficient Investment Portfolios for the Swiss Electricity Supply Sector, FCN Working Paper No. 2/2008, RWTH Aachen University, August 2008.
  • MARANAS C., ANDRULAKIS I., FLOUDAS C., BERGER A., MULVEY J., Solving long-term financial planning problems via global optimization, Journal of Economic Dynamics and Control, 1997, 21 (7–8), 1405–1425.
  • MOSSIN J., Optimal multi-period portfolio policies, Journal of Business, 1968, 41 (2), 215–229.
  • MULVEY J., Introduction of financial optimization, Mathematical Programming Special Issue, Mathematical Programming, 2001, 89 (2), 205–216.
  • MULVEY J., BAUERFEIND T., SIMSEK K.D., VURAL M.T., Performance enhancements for defined benefit pension plans, [in:] Stochastic Optimization Methods in Finance and Energy, M. Bertocchi, G. Consigli, M.A.H. Dempster (Eds.), Springer, New York 2011, 43–71.
  • MULVEY J., KAUL S.S., SIMSEK K., Evaluating a Trend-Following Commodity Index for Multi-Period Asset Allocation, The Journal of Alternative Investments, 2004, 7 (1), 54–69.
  • MULVEY J., PAULING W., MADEY R., Advantages of multiperiod portfolio models, The Journal of Portfolio Management, 2003, 29 (2), 35–45.
  • MULVEY J., ROSENBAUM D., SHETTY B., Strategic financial management and operations research, European Journal of Operational Research, 1997, 97 (1), 1–16.
  • ÖSTERMARK R., Vector forecasting and dynamic portfolio selection: Empirical efficiency of recursive multi-period strategies, European Journal of Operational Research, 1991, 55 (1), 46–56.
  • ÖSTERMARK R., Dynamic portfolio management under competing representations, Kybernetes, 2005, 34 (9/10), 1517–1550.
  • PEREIRA M., PINTO L., Stochastic optimization of multi-reservoir hydroelectric system: A decomposition approach, Water Resources Research, 1985, 21 (6), 779–792.
  • PEREIRA M., PINTO L., Multi-stage stochastic optimization applied to energy planning, Mathematical Programming, 1991, 52 (2), 359–379.
  • ROCHA P., KHUN D., Multistage stochastic portfolio optimisation in deregulated electricity markets using linear decision rules, European Journal of Operational Research, 2012, 216, 397–408.
  • ROQUES F.A., NEWBERY D.M., NUTTALL W.J., Fuel mix diversification in liberalized electricity markets: A mean-variance portfolio theory approach, Energy Economics, 2008, 30 (4), 1831–1849.
  • SEN S., YU L., GENC T., A stochastic programming approach to power portfolio optimization, Operations Research, 2006, 54 (1), 55–72.
  • STEINBACH M.C., Markowitz Revisited: Mean-Variance Models in Financial Portfolio Analysis, SIAM Review, 2001, 43 (1), 31–85.
  • STEINBACH M.C., Recursive direct algorithms for multistage stochastic programs in financial engineering, Konrad-Zuse-Zentrum für Informationstechnik, Berlin 1998, Preprint SC 98-23.
  • VITHAYASRICHAREON P., MACGILL I.F., Assessing the value of wind generation in future carbon constrained electricity industries, Energy Policy, 2013, 53, 400–412.
  • WESTNER G., MADLENER R., Development of Cogeneration in Germany: A Dynamic Portfolio Analysis Based on the New Regulatory Framework, FCN Working Paper No. 4/2009, RWTH Aachen University, November, 2009.
  • WESTNER G., MADLENER R., The benefit of regional diversification of cogeneration investments in Europe: A mean-variance portfolio analysis, Energy Policy, 2010, 38 (12), 7911–7920.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-7b8e0769-05dd-48f1-a5ca-2e7fe459587c
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.