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ABSTRACT 

Skewed distributions with representative outliers pose a problem in many surveys. 

Various small area prediction approaches for skewed data based on transformation 

models have been proposed. However, in certain applications of those predictors, 

the fact that the survey data also contain a non-negligible number of zero-valued 

observations is sometimes dealt with rather crudely, for instance by arbitrarily 

adding a constant to each value (to allow zeroes to be considered as “positive 

observations, only smaller”, instead of acknowledging their qualitatively different 

nature). 

On the other hand, while a lognormal-logistic model has been proposed  

(to incorporate skewed distributions as well as zeroes), that model does not include 

any hierarchical aspects, and is therefore not explicitly adapted to small area 

prediction. 

In this paper, we consolidate the two approaches by extending one of the already 

established log-transformation mixed small area prediction models to incorporate 

a logistic component. This allows for the simultaneous, systematic treatment of 

domain effects, outliers and zero-valued observations in a single framework. We 

benchmark the resulting model-based predictors (against relevant alternatives) in 

applications to simulated data as well as empirical data from the Australian 

Agricultural and Grazing Industries Survey. 

Key words: small area estimation, representative outliers, zero-valued 

observations, lognormal-logistic mixture model. 

1. Introduction 

1.1. Estimation in the presence of skewed data 

It is a well-known fact that survey data frequently are skewed (Huber 1981, 

Fuller 1991, Barnett and Lewis 1994). Examples include the income (Mincer 1970) 

and wealth (Huggett 1996) of private individuals as well as many of the variables 

observed in Business surveys (Chambers 1986, Thorburn 1993, Hidiroglou and 
                                                           
1 Luxembourg Statistical Services. E-mail: Forough.Karlberg@LuxStat.eu. 

mailto:Forough.Karlberg@LuxStat.eu


542                                                                           F. Karlberg: Small area estimation … 

 

 

Smith 2005, Zimmermann and Münnich 2013, Shlomo and Priam 2013). These 

extreme values are not erroneous; on the contrary, to take but one example, a large 

enterprise typically constitutes an important part of the local economy of a 

municipality – and to treat them as anomalies by merely eliminating them when 

they are encountered would be erroneous. Such extreme values are to be regarded 

as representative outliers in the terminology of Chambers (1986). Various methods 

have been developed to treat the issue of estimation in the presence of such outliers, 

e.g. by adjusting outlyingness, possibly in connection with determining a boundary 

(threshold) for the outliers (Searls 1966, Kokic 1998, Hubert and Van der Veeken 

2007), as well as some methods with downweighting (Hidiroglou and Srinath 1981, 

Lee 1995, Sinha and Rao 2009).  Historically, there are different approaches used 

for transforming the data (including  important outliers) to linearity (Carroll and 

Ruppert 1988, Chen and Chen 1996, Chandra and Chambers 2011, Berg and 

Chandra 2012),  with some applications concentrating on the finite population 

distribution of a survey variable (Royall 1982, Jiang and Lahiri 2006, Salvati et al., 

2012). Karlberg (2000a) conducts model-based estimation under a lognormal 

model and extends it to a lognormal-logistic (Karlberg, 2000b). This has the double 

advantage of moderating the impact of outliers that are in the sample and, in case 

no outliers are included, to adjust for their (assumed) presence in the population. 

However, there are also issues with lognormal models. First, the back-

transformation introduces bias which must be corrected for; while technically 

challenging, this is manageable; bias-correction terms are provided by, e.g. 

Karlberg (2000b). More importantly, as with all model-based estimation, severe 

bias could result in case the presumed lognormal model does not hold. 

By logical extension, small area estimation involving skewed variables is also 

a challenge, compounded by the fact that the samples for each domain are smaller, 

leading to an even higher sensitivity to outliers (Lehtonen et al., 2003). Various 

methods, some of them including log-transformation of the data, have been 

proposed (Chambers and Dorfman 2003, Slud and Maiti (2006), Chandra and 

Chambers 2011, Berg and Chandra 2012, Zimmermann and Münnich 2013). 

1.2. The added complexity of zero-valued observations 

It is not infrequent to encounter skewed variables that, while considerably right-

skewed, also contain a sizeable proportion of zero-valued observations (Lamberta 

1992, Chen et al., 2003). Obviously, estimation methods based on logarithmic 

transformation are no longer directly applicable to such variables. Sometimes, this 

is addressed by merely adding an arbitrary constant  (=1 being common practice) 

to the variable (see Young and Young 1975), which then again becomes possible 

to logarithm. However, this manner of treating zero-valued observations is not 

unproblematic. First, from a technical point of view, it is hard to argue that the 

resulting logarithmed variable is normally distributed – it would rather be bimodal, 

with one mode at ln(), and definitely not continuous, with a large number of values 

assuming the exact same value ln(). Moreover, the choice of the constant  is 
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arbitrary, with a different choice rendering different results. Finally, and most 

importantly, it could be argued that a variable assuming the value 0 is something 

more than a computational problem or a technical nuisance – sample units with 

zero-valued observations are in fact often qualitatively different from those with 

positive values. Taking wages as an example, a person with a wage figure of 0 is 

typically not “gainfully employed but with a salary of 0”, but rather unemployed or 

otherwise out of the labour market. Similarly, a farm with a crop area of 0 does 

typically not belong to a crop farmer who just happens to not grow any crops, but 

rather to a farmer focusing on other activities, such as dairy, forestry or livestock. 

1.3. Solutions investigated in this paper 

The lognormal-logistic model discussed by Karlberg (2000b) seems to be a 

more appropriate way to address this issue. The estimator associated with that 

model first fits a logistic model (to deal with the zero-valued observations), and 

thereafter fits a lognormal model to the positive observations. However, the model 

in question is not directly designed to accommodate small area estimation. In this 

paper, we will therefore devote Section 2 to extending the model of Karlberg to 

incorporate hierarchical elements (or, put differently, extending the model of Berg 

and Chandra (2012) to incorporate a logistic element). This is achieved by 

straightforward, practical combinations of already existing tools (see Pfeffermann, 

2013); this paper includes no major theoretical contributions. The empirical 

properties of the four resulting estimators are then examined in Section 3, for 

random lognormal-logistic data, as well as for data from the Australian Agricultural 

and Grazing Industries Survey (AAGIS). The findings are discussed in Section 4, 

which also brings up possible future lines of study. 

2. Methods 

2.1. The lognormal-logistic model 

Under the lognormal-logistic model studied in this paper, we will, just like 

Karlberg (2000b), assume that Yij , the value of unit j for area i for the variable of 

interest(Y), is the product 

Yij = Ỹij∆ij 

of a “lognormal component”  ijY
~

 and a binary (0 or 1) “logistic component” ij with 

independence between the two components. 
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2.1.1. The lognormal component 

Letting Xij denote a vector of auxiliary variables for unit j, we assume that 

ln(Ỹij) = Z̃ij = 𝐁𝐗ij + ui + eij 

where B is an unknown parameter, and, for the area-level effects, we have that 

they are i.i.d. 

ui~N(0, σu) 

and for the residuals that they are i.i.d. 

eij~N(0, σe) 

with, furthermore, independence between any ui and any eij. 

2.1.2. The logistic component 

Letting ij denote a vector of auxiliary variables for unit j (possibly identical 

Xij), we assume that the logistic component values are conditionally independently 

Bernoulli distributed: 

∆ij~Bernoulli (
exp(𝛃𝚵ij + ωi)

1 + exp(𝛃𝚵ij + ωi)
) 

where β is an unknown parameter and the area-level effects are i.i.d. 

ωi~N(0, σω). 

2.1.3. Relationship with previous models 

We see from the first column of Table 1 that estimators for unit-level lognormal 

models (without a logistic component) have been defined without area effects by 

Karlberg (2000a) and with area effect by Berg and Chandra (2012). From the two 

other columns (with stochastic ij), we see, however, that to date, only the simplest 

case (i.e. with no hierarchical components) has been treated; this corresponds to 

Karlberg (2000b). 

In this paper, we will therefore proceed to investigate lognormal-logistic 

estimators of small area means corresponding to all four possible cases. 
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Table 1. Relationship between the model parameters and previously addressed

 models 

 ij  1 ij stochastic 

 (i.e. no logistic component) = 0 > 0 

u= 0 Karlberg (2000a) Karlberg (2000b) – 

u > 0 Berg and Chandra (2012) – – 

2.2. Fitting the model and estimation of small area means 

2.2.1. Estimation of the model parameters and fitted area effects 

In order to evaluate the various estimators, a simulation study has been 

conducted. Due to the availability of appropriate SAE packages in R, the study was 

set up through a couple of R scripts. For all four possible options, the estimation 

procedure proposed in this paper is as follows: 

1. First, the logistic model parameters are estimated. Two cases are possible: 

a.  If there is no logistic area effect (i.e. if =0), the logistic parameter  is 

estimated by means of logistic regression via the GLM function. 

b. If  > 0, the parameters  and  are estimated (and the i-values are 

fitted) using hierarchical logistic regression via the HGLM function 

(Rönnegård et al., 2010). 

2. Based on the logistic regression outcome: 

a.  Estimated probabilities are computed for each unit as  

p̂ij =
exp(𝛃̂𝚵ij + ω̂i)

1 + exp(𝛃̂𝚵ij + ω̂i)
 , 

b. area frequencies with positive Yij values are estimated by  

N̂+i = ∑ ∆ijj∈si
+ ∑ p̂ijj∈ri

 , and 

c. area auxiliary variable averages for the observations with positive Yij values 

are estimated by 

𝐗̂̅+i = (∑ ∆ij𝐗ijj∈si
+ ∑ p̂ij𝐗ijj∈ri

) N̂+i⁄  . 

3. Thereafter, the lognormal model parameters are estimated. 

a. If there is no lognormal area effect (i.e. if u=0),  B and e are fitted as in 

Karlberg (2000b). 
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b. If u > 0, the parameters B, u and e are estimated (and the ui-values are 

fitted) as in Battese, Harter and Fuller (1988) using the eblupBHF function 

(Molina and Marhuenda, 2013), i.e. the empirical best linear unbiased 

predictor (EBLUP; see Rao 2003, and Wang and Fuller 2003). 

2.2.2. Prediction of unobserved values 

If there is no lognormal area effect, then the lognormal component of each 

unobserved value is predicted, as in Karlberg (2000b) by the back-transformed 

predicted values of Zij multiplied by a bias correction factor: 

Ŷ̃ij = exp (Ẑ̃ij) exp (
𝜎̂e

2

2
(1 − aij) +

𝜎̂e
4

4n+
) 

where n+ is the number of positive observations in the sample (obtained as the sum 

of all observed values of ij),   

aij = 𝐗i
´(𝐗´𝐗)

−1
𝐗j 

and  

Ẑ̃ij = 𝐁̂𝐗ij . 

If the model incorporates lognormal area effects, then the lognormal 

components are instead predicted, as in Berg and Chandra (2012), by  

Ŷ̃ij = exp (Ẑ̃ij) exp (
𝜎̂e

2

2
(

γi

n+i
+ 1)) 

where the number of positive observations in area i is denoted by 

n+i = ∑ ∆ij,j∈si
  

γi = 𝜎̂u
2 (𝜎̂u

2 + 𝜎̂e
2 n+i⁄ )⁄ ,  

and  

Ẑ̃ij = 𝐁̂𝐗ij + ûi . 

Combining this with the logistic probability estimates, each unobserved value 

is predicted by  

Ŷij = Ŷ̃ijp̂ij . 
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2.2.3. Estimation of small area means 

Finally, based on the sum of the observed and predicted values, the small area 

means are simply estimated by: 

Ŷ̅i =
1

ni
(∑ Yijj∈si

+ ∑ Ŷijj∈ri
) .  

To distinguish between the four possible lognormal-logistic (LL) estimators, 

subscripts based on the hierarchical components are used, as indicated in Table 2.  

Table 2. The four lognormal-logistic small area estimators obtained by

 combining the dispersion parameter models 

                    Logistic 

Lognormal 
= 0 > 0 

u= 0 00ˆ LL

iY  ω0ˆ LL

iY  

u > 0 0ˆ uLL

iY  ωˆ uLL

iY  

 

Letting T̂ denote the population total estimator of Karlberg (2000b), we have 

that  

T̂ = ∑ NiŶ̅i
LL00a

i=1    

where a is the number of areas. As the exact same model is used, the variance 

estimator of Karlberg (2000b) is easily applicable to Ŷ̅i
LL00 . 

3. Empirical evaluation of estimator properties 

3.1. Estimators evaluated and benchmark estimators 

The lognormal-logistic estimators of small area means have been evaluated 

against estimators based on the raw (unlogarithmed) Yij values. For real survey data, 

we used 

(i) the direct estimator 
DIR

iŶ , as implemented in the SAE package (Molina and 

Marhuenda, 2013) 

(ii) the synthetic unit-level regression estimator 
REG

iŶ  (thus without area 

effect), used for benchmarking purposes by Karlberg (2000b) and  

(iii) the Battese, Harter, Fuller estimator (1988) 
BHF

iŶ  as implemented in the 

said SAE package. 
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For random data, we limited the set of benchmark estimators to (ii) and (iii), 

since there was no model misspecification for the lognormal-logistic estimators 

rendering the direct estimator superior in terms of unbiasedness. Since there are 

two sets of auxiliary information  and X used by the lognormal-logistic estimators, 

we used the union of those matrices as auxiliary information for the benchmark 

estimators (ii) and (iii) using auxiliary information. 

3.2. Stochastic data 

3.2.1. Lognormal-logistic parameters 

There are numerous ways to vary the ways in which stochastic data are 

generated. In this simulation study, we fixed most parameters, in essence only 

varying the small area sample size ni and, directly or indirectly, the dispersion 

parameters of the two types of area-level effects (ui and i). 

First, we limited the study to lognormal-logistic data, saving the investigation 

of possible model misspecification to the simulation study related to real survey 

data. In terms of size, we used only a=20 small areas, and fixed the ratio between 

small area (population) size and small area sample size to Ni/ni=20, and also 

imposed the restriction that ni be the same across all of the a areas. Considering the 

essence of auxiliary variables being sufficiently captured by one auxiliary variable 

for the purposes of this simulation study, we limited the   and X matrices to contain 

(in addition to the requisite intercept dummies) a sole auxiliary variable each. We set 

these variables to be i.i.d. normal distributed, i.e. 1ij ~ N(0,1) and X1ij ~ N(0,1) 

(thus having zero correlation between the two auxiliary variables; X = 0). 

We invariably used the logistic regression parameter β=(1,1); with the logistic 

intercept parameter 0 thus equal to 1, the resulting number of non-zero Yij values 

is roughly equal to e/(1+e)  ¾. We thus have roughly ¼ zero-valued observations 

in the population. We used the lognormal regression parameter B=(0,1) throughout. 

3.2.2. Simulation study 

With most parameters fixed, we tried out the Cartesian product of the following 

free parameters: 

 We used two different area sample sizes ni=20 and ni=5. 

 With the overall variance in the lognormal component fixed at 

σ 
2 = σu

2 + σe
2 = 1,  

we varied the area effect proportion  

pσ = σu
2 σ 

2⁄   

in small increments from 0 to 0.2. 
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 We varied the logistic area effect standard deviation  in small increments 

from 0 to 1.5. 

For each parameter combination, we generated K=100 random populations and 

drew a single stratified random sample from each of them. (However, if any sample 

with no positive observations at all for an entire area, i.e. where any n+i=0, was 

encountered, the population was regenerated, and the sample was redrawn.) The 

three benchmark and four lognormal-logistic estimators were then used to estimate 

the small area averages, and for each area i and replicate k, the relative bias of the 

estimator EST was calculated as 

RBi(k)
EST = (Ŷ̅i(k)

EST − Y̅i(k)) Y̅i(k)⁄    

and the relative MSE of EST was obtained as 

RMSEi(k)
EST = (RBi(k)

EST)
2

. 

Thereafter, in view of the fact that with the stochastic data, the small areas are 

interchangeable, the overall relative bias of the estimator EST is obtained by 

averaging RBi(k) across all areas as well as across all replicates as:  

RBEST =
1

aK
∑ ∑ RBi(k)

ESTa
i=1

K
k=1    

and the overall relative root mean squared error is obtained as: 

RRMSEEST = √
1

aK
∑ ∑ RMSEi(k)

ESTa
i=1

K
k=1   .  

The relative efficiency of an estimator EST w.r.t. a benchmark estimator BNCH, 

can then be obtained as 

REBNCH
EST = RRMSEBNCH

2 RRMSEEST
2⁄   .  

3.2.3. Results 

In Figure 1, the observed relative efficiency at an area level sample size ni=20 

for each dispersion parameter combination is illustrated for each 

estimator/benchmark estimator (columns; orange labels / rows; green labels) pair. 

In essence, green colour coding indicates superiority w.r.t. the benchmark, and red-

orange-yellow patterns indicate various degrees of inferiority. Given the multitude 

of comparisons that we perform below, we will, for compactness, use the index as 

a shorthand form to refer to an estimator in running text; for instance, we let LL00 

denote the estimator 

Ŷ̅i
LL00    
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This largely corresponds to the row and column labels of the figures presenting the 

results (although the figures use “w” for , and have a leading “Y” for the 

estimators based on unlogarithmed values). 

A reasonable conjecture is that there is monotonicity of the true relative 

efficiency w.r.t. to the dispersion parameters, meaning that if the number of 

replicate populations was larger, the colour regions would be contiguous. 

Match-ups where a colour mosaic is displayed are thus an indication of lack of 

precision in terms of RE estimation. The prevalence of such “mosaics” in Figure 1 

thus means that we can only express ourselves in terms of general tendencies 

regarding the impact of dispersion parameters on the RE of an estimator w.r.t. 

another estimator. We would have to conduct a simulation study with somewhat 

more replicates to be able to more precisely define the boundaries at which one 

estimator becomes more efficient than the benchmark estimator. 

However, already the general tendencies observed are quite informative. 

Starting out with the intra-class comparison among the lognormal-logistic 

estimators, we see, as expected, that if the logistic area dispersion parameter  

increases (rightwards in each pane), the estimators incorporating  (LLu and 

LL0) fare better than the corresponding estimators lacking those components (LLu0 

and LL00, respectively). The pairwise comparisons in question (LLu vs. LLu0; LL0 

vs. LL00) indicate that this superiority holds already for very small positive values 

of , with the boundary somewhere around =0.2. Similarly, an increase in the 

lognormal area effect proportion (upwards in each pane) renders the estimators 

incorporating a positive parameter u (LLu and LLu0) more efficient than those that 

do not (LL0 and LL00, respectively). The pairwise comparisons in question (LLu 

vs. LL0; LLu0 vs. LL00) indicate that this superiority occurs already at a very modest 

area effect proportion (the boundary seemingly falling somewhere around 

p=0.025). 

Turning our attention to comparisons with the design-unbiased (DIR) and 

model-based (REG and BHF) estimators based on raw, untransformed Yij values, it 

appears from Figure 1 that the lognormal-logistic estimator incorporating both 

variants of area-level effects, LLu, is more efficient than the estimators based on 

untransformed data, with the possible exception of situations where both  and u 

are very small. 

While Figure 1 presents the bottom line, i.e. the relative efficiency, it could also 

be interesting to explore the relative bias of the various estimators. The results (not 

shown here) indicate that, as expected, the relative bias of the direct estimator is 

invariably low regardless of the parameterisation – typically in the range of ±1%. 

At p=0, as  increases from 0 to 1.5 the relative bias of the appropriate estimator 

LL0 increases only moderately (from 2% to 6%), whereas the bias of the estimator 

LL00, which lacks a logistic area component, increases dramatically (from 2% to 

30%). At p=0.2 and =0, the estimators lacking a lognormal area component have 
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a relative bias of 20%, compared to a modest relative bias of 5% for those that allow 

for a positive value of u . 

 

Figure 1. Relative Efficiency (RE) of each of  the four evaluated estimators 

(columns) against seven benchmark estimators (rows) for various values 

of the lognormal-logistic parameters  and p . Each rectangle 

corresponds to 100 stratified random samples; each of them drawn from 

a different lognormal-logistic data set. For each of the a=20 small areas 

(each with a size Ni=400), the sample size is ni=20. 

Figure 2 summarises the relative estimator efficiencies for random data with 

area level sample size of ni=5 (with the sampling proportion remaining the same, 

the area population size Ni is 5·20=100 here, whereas it was 20·20=400 for the 

results summarised in Figure 1 above). To summarise the results for that very small 

sample size, we could say that the same general tendencies hold, but with the 

area-level dispersion parameter boundaries shifted upwards (to 0.3 and 

p0.075). However, Figure 2 is much more of a “mosaic” nature. This is due to 

the far more volatile nature of both numerator and denominator (in turn due to the 

high volatility of the small area estimators caused by the very low sample sizes for 

the small areas). A surprising finding is, however, that for very large values of the 
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logistic dispersion parameter (1.5) the direct estimator turns out to be superior 

to those based on lognormal-logistic models. This might be attributed to the very 

low number of non-zero observations used to estimate the lognormal distribution 

parameters and area effects. 

 

Figure 2. Relative Efficiency (RE) of each of  the four evaluated estimators 

(columns) against seven benchmark estimators (rows) for various values 

of the lognormal-logistic parameters  and p . Each rectangle 

corresponds to 100 stratified random samples; each of them drawn from 

a different lognormal-logistic data set. For each of the a=20 small areas 

(each with a size Ni=100), the sample size is ni=5. 

3.3. Survey data 

3.3.1. The AAGIS data 

Like, e.g. Chandra and Chambers (2005) and Chambers and Tzavidis (2006) 

and Molina (2009), we have applied our lognormal-logistic estimators data 

obtained from a sample of 1652 farms that participated in the Australian 

Agricultural and Grazing Industries Survey (AAGIS). This survey includes a 

number of variables with skewed distributions and a sizeable proportion of 0s, 
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lending itself well to lognormal-logistic modelling. Moreover, as the data are 

subdivided into 29 regions (areas), it is also useful for Small Area Estimation. Out 

of the 1652 observations, we have excluded one with a zero-valued observation for 

a possible auxiliary variable (to allow us to logarithm it if needed). Some basic 

characteristics of the variable Beef Cattle are provided in Appendix 1. 

The only possible Y variable for our class of estimators is Beef Cattle, since the 

other variables with zero-valued observations have some areas for which there are 

no observations with positive values at all, rendering estimation with the current 

implementation of the BHF estimator in the SAE package impossible. (Obviously, 

this would have to be resolved before such lognormal-logistic estimators are 

implemented in production.) We have used Farm Area as the auxiliary variable for 

the logistic component as well as for the lognormal one. 

In the simulation study, we have drawn stratified samples (treating the AAGIS 

data, albeit they are from a sample survey, as a population of size 1651). The only 

parameter varied has been ni , for which we have used six different 

parameterisations, of two different types: (i) the same absolute number across areas 

(capped at a sample fraction of 50% per area) and (ii) a constant sample fraction 

per area (with a minimum absolute sample size of 1). 

For each parameterisation, we have used 100 replicates. It should be underlined 

that in contrast to the evaluation of estimator performance for random data (where 

the areas could be considered interchangeable), the performance measures have 

been calculated area by area (across all replicates), and not across all small areas. 

The area-specific relative bias of area i is thus obtained as  

RBEST;i =
1

K
∑ RBi(k)

ESTK
k=1    

and the other performance measures are obtained analogously. 

3.3.2. Results 

As could be seen from Figure 3, the bias is severe for LL00  and  LLu for certain 

small areas, with the relative bias sometimes extremely high. With   DIR unbiased 

by design, this inevitably carries over into the direct estimator being superior in 

terms of relative efficiency for such areas, as illustrated by Figure 4. Taking area 1, 

the area with the smallest number of positive observations (N+1=4) as an example, 

we have that the relative bias of LL00 is around 100, which, in spite of the high 

variance of  DIR, carries over a relative efficiency of the direct estimator of 

approximately 104. 
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Figure 3. Average relative bias of the DIR, LL00 and LLu estimators of Beef Cattle 

area means for various sample sizes. 100 replicates have been used for 

each sample size parameter. 

Owing to these findings, we do not present findings regarding the other 

benchmark estimators or lognormal-logistic estimators here; if the lognormal-

logistic estimators fail to outperform the direct estimators, their performance 

relative to each other and relative to other benchmark estimators becomes less 

interesting.  

In Appendix 1, the drivers for these tendencies are investigated. In short, as is 

often the case for small area estimation (Chambers et al., 2014), a model which 

works reasonably well at population level is found to be inappropriate at the area 

level. 

 

no. of positive observations 
 N+i in the area 
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Figure 4.  Relative efficiency of the DIR and LLu estimators (w.r.t. LL00) of Beef 

Cattle area means for various sample sizes. 100 replicates have been 

used for each sample size parameter 

4. Conclusions 

In Section 2 of this paper, we have arrived at four different lognormal-logistic 

estimators of small area means by combining the lognormal small area estimator of 

Berg and Chandra (2012) with the lognormal logistic model of Karlberg (2000b), 

and optionally incorporating hierarchical logistic regression. 

We have conducted a simulation study to investigate the estimator properties 

under ideal circumstances, i.e. when the presumed lognormal-logistic model holds. 

As seen from Section 3.2, the estimators behave largely as predicted, i.e. when 

lognormal and/or logistic area-level effects are present, models incorporating such 

effects are superior, in terms of relative efficiency. Interestingly, this holds already 

no. of positive observations 
 N+i in the area 
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for rather small effects; the “penalty” for “unnecessarily” estimating a parameter 

when such a parameter is not present (thus introducing “white noise” into the 

estimation process) seems to be very modest. Using LLu for lognormal-logistic 

data thus seems to be the best option (with the possible exception of situations with 

very low sample sizes (say ni5) combined with large heterogeneity between the 

areas in terms of the proportion of positive observations (say 1.5) when the 

direct estimator might be a safer option). 

However, the model assumptions could be challenged. First, the assumption 

about independence between the lognormal and logistic components, made in 

Section 2.1, could be challenged; Pfefferman et al. (2008) convincingly argue for 

assuming a correlation between the two types of random effects; an extension of 

the model presented in this paper following the Bayesian approach proposed by 

Pfefferman et al. to relax the independence assumption. Even more critical is the 

fact that in real life data do not necessarily comply with a lognormal-logistic model, 

rendering the possible presence of correlation an issue of secondary importance. As 

could be seen from Section 3.3, the estimator’s performance for the Beef Cattle 

variable of AAGIS is disastrous for certain small areas. This is studied in Appendix 

1, where it is found that the small area estimation fails even if the model is fitted to 

the entire AAGIS data set, as going from national level to regional (area) level leads 

to severely biased estimates for some areas. Given this failure at small area 

population level, it is no surprise that the performance is bad when estimation is 

carried out for random samples. The situation is somewhat improved when area-

level random effects are introduced – but an intolerable bias level remains for many 

areas. 

It would be interesting to evaluate whether this is an artefact of the AAGIS data, 

i.e. if there are other real data sets where the lognormal-logistic estimators fare 

better, and what the properties of such data sets are (e.g. larger “small areas”, or 

more highly correlated variables) – or if this poor performance is all but 

unavoidable. It could be argued that the performance issues are not so much related 

to the data as to the model, and there are a number of possible improvements of the 

lognormal-logistic models, such as somehow integrating it into the robust weighted 

mixed model of Chandra and Chambers (2011), which might be worth exploring.  

Minor possible improvements also include a more formal treatment of the bias 

correction factor (currently simply carried over from Berg and Chandra; 2012), and 

the development of a proper model-based variance estimator (currently only readily 

available for LL00), possibly even with an uncertainty measure for this variance (see 

Royall and Cumberland 1978 and Fellner 1986). Practical extensions to allow for 

some n+i=0, and extensions to also allow negative values of Yij are also worth 

considering. 
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                     APPENDIX 

Appendix 1. Methodological details 

A.1. Regression line fit at population level 

In an attempt to identify the root cause of the poor performance of the 

lognormal-logistic estimators, we started out by fitting the model associated with 

LL00  to the entire population, i.e. the 1651 AAGIS observations. As could be seen 

from Figure A1, the model fits the data reasonably well; this is corroborated by the 

performance of T̂ for the very same variables observed by Karlberg (2000b). 

 

Figure A1. Regression line (red) fit to the logarithmed positive values of Beef 

Cattle for all 1651 observations (black) of AAGIS. The application of 

the bias correction factor is illustrated by the blue line. 
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A.2. Estimator performance at area level 

Figure A2 demonstrates the effect of proceeding to the area level. There, we 

see that sometimes (taking the 4/43 area with 4 positive and 43 zero observations 

at the bottom left as an example) the entire area is composed of observations far 

from the regression line. Further investigations (not explicitly presented here) 

demonstrate that even if the large heterogeneity between areas in terms of zero 

valued observations (ranging from 0% to 91%, as could be seen from Table A1) is 

disregarded, the model completely fails to capture the structure of the positive 

values in a number of areas. 

 

Figure A2. Regression line (red) fit to the logarithmed positive values of Beef 

Cattle for all 1651 observations of AAGIS, illustrated together with 

the observations (black) area by area. The number of positive/zero 

observation per area is indicated in the red strip above each area. 

Obviously, if there is a severe bias even in an ideal situation, even with the 

model fit to the entire population, this is what could be expected to hold on average 
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for samples drawn from that population as well. This is precisely what we observe 

in Figure 3 for certain of the areas in the simulation study. 

As the incorporation of area effects allows the fitting of a model that is closer 

to the values observed for each area, the bias of LL00  is, as could be seen from 

Figure 3, somewhat less severe across most areas, in particular the smaller ones. 

However, the performance is still unacceptable for that estimator as well. 

Table A1. Some characteristics of the AAGIS variable Beef Cattle 

Area i No. of farms 𝑁𝑖 (𝑁𝑖 − 𝑁+𝑖) 𝑁𝑖⁄  ∑ Yi
N𝑖
j=1 𝑁+𝑖⁄   

1 47 91% 26.5 

2 6 0% 7523.5 

3 10 0% 8945.7 

4 51 76% 28.8 

5 25 40% 1554.7 

6 19 11% 4285.6 

7 55 65% 136.6 

8 83 73% 1148.9 

9 36 36% 1985.5 

10 30 17% 430.1 

11 60 58% 100.2 

12 80 65% 97.8 

13 30 3% 2774.7 

14 30 0% 12903.0 

15 35 6% 5878.8 

16 34 0% 404.5 

17 40 13% 1129.4 

18 60 32% 670.5 

19 51 12% 1139.6 

20 73 32% 643.6 

21 62 13% 530.9 

22 77 21% 387.0 

23 74 16% 390.7 

24 79 19% 434.8 

25 108 33% 435.2 

26 103 28% 415.5 

27 81 6% 526.6 

28 95 12% 632.5 

29 117 16% 980.6 

All areas 1651 30% 1308.5 

 


