PL EN


Journal
2016 | 3 (53) | 102-114
Article title

Grafy a teoria stabilnych alokacji

Content
Title variants
EN
Graphs and theory of stable allocation
Languages of publication
PL
Abstracts
EN
The paper discusses a model of matching process which was proposed by two American mathematicians: David Gale and Lloyd S. Shapley. The basic concept defined by them was the stable allocation, which can be achieved with so-called deferred acceptance algorithm. The article analyzes the problems discussed by the theory of stable allocations on the basis of graph theory. It has been shown that the issues raised by this theory can be ana-lyzed using bipartite graphs and networks weighted. They also formulated conditions which should be met in purpose to solve a problem of matching. References relate to the labor market, as a discussed issue is applicable in practice, especially in the design of systems of recruitment companies. The aim of the article is to present the problem of bilateral associa-tions with the use of the language of graph theory and an indication of possible applications in the area of search and match of job seekers and employers.
Keywords
Journal
Year
Issue
Pages
102-114
Physical description
Contributors
References
  • Baïou M., 2016, A note on many-to-many matchings and stable allocations, Discrete Applied Math-ematics, 222, s. 181-184.
  • Baïou M., Balinski M., 2007, Characterizations of the optimal stable allocation mechanism, Opera-tion Research Letters, 35, s. 392-402.
  • Biró P., Fleiner T., 2010, Integral stable allocation problem on graphs, Discrete Optimization, 7, s. 64-73.
  • Bronsztejn I.N., Siemiendiajew K.A., Musiol G., Mühlig, 2013, Nowoczesne kompendium matematy-ki, Wydawnictwo Naukowe PWN, Warszawa.
  • Halmos P.R., Vaughan H.E., 1950, The marriage problem, American Journal of Mathematics, vol. 72, no. 1, s. 214-215.
  • Lovász L., Plummer M.D., 1986, Matching Theory, North-Holland, Amsterdam.
  • Roth A.E., 1984, The evolution of the labor market for medical interns and residents: A case study in game theory, Journal of Political Economy, no. 92, s. 991-1016.
  • Roth A.E., 2002, The economist as engineer: Game theory, experimentation, and computation as tools for design economics, Econometrica, vol. 70, no. 4, s. 1341-1378.
  • Roth A.E., Sotomayor M.A., 1992 Two-sided matching. A study in game theoretic modeling and analysis, http://web.stanford.edu/~alroth/papers/92_HGT_Two-SidedMatching.pdf (10.12.2015).
  • Ruohonen K., 2013, Graph theory, Tampere University of Technology, http://math.tut.fi/~ruohonen/ GT_English.pdf (15.01.2016).
  • Shapley L.S., Gale D., 1962, College admissions and the stability of marriage, The American Math-ematical Monthly, vol. 69, s. 9-15.
  • Stankiewicz W., 2013, Kolejny sukces teorii gier: nobliści z ekonomii 2012, Ekonomia i Prawo, tom XII, nr 1/2013, s. 33-45.
  • Świtalski Z., 2008, O kojarzeniu małżeństw i rekrutacji kandydatów do szkół, Rocznik Polskiego Towarzystwa Matematycznego, Seria II: Wiadomości Matematyczne, XLIV, s. 35-46.
  • Wilson R.J. 2012, Wprowadzenie do teorii grafów, Wydawnictwo Naukowe PWN, Warszawa.
  • Wojciechowski J., Pieńkosz K., 2013, Grafy i sieci, Wydawnictwo Naukowe PWN, Warszawa.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-8bb286b5-b2d9-4fc8-a3eb-abc566267879
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.