Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2018 | 1(120) "Motywacja na różne sposoby, czyli znane problemy w nowych odsłonach" / "Various Approaches to Motivation or a New Look and Old Problems" | 139-154

Article title

Wykorzystanie technologii Big Data i analizy danych we wspomaganiu procesów ZZL

Content

Title variants

EN
Technologies and Data Analysis in Supporting HR Processes

Languages of publication

PL

Abstracts

PL
Termin „Big Data” szybko rozprzestrzenia się w środowisku naukowym i w organizacjach. Wpływa również na zarządzanie danymi w obszarze ZZL, które ewoluuje od prostego raportowania w kierunku wykorzystania danych do podejmowania decyzji, zaawansowanego planowania zatrudnienia, poprzez przewidywanie wydajności pracowników i zarządzanie talentami. Celem artykułu jest scharakteryzowanie technologii Big Data w kontekście ZZL oraz zaprezentowanie metod analizy, które można wykorzystać w tym obszarze. Artykuł rozpoczyna prezentacja technologii Big Data, następnie przedstawiono metody i narzędzia analityki kadrowej oraz na podstawie badań literaturowych i studiów przypadku zestawiono funkcje i zadania ZZL z ofertą technologii Big Data i analityki kadrowej. Poruszono również kwestie zagrożeń, jakie towarzyszą wprowadzeniu tej technologii.
EN
The term Big Data is rapidly spreading in academia as well as in organizations. It is also having an impact on data management in the area of HR, evolving from simple reporting to the application of data in decision–making and advanced employment planning all the way to predicting worker output and talent management. The aim of the article is to characterize Big Data technology in the context of HRM as well as to present data analysis methods that may be used in this area. The article is launched with a presentation of Big Data technology, followed by a presentation of analytical methods and tools for staff analyses. HRM functions and tasks are compiled on the basis of literature research and case studies displaying the range of Big Data technology and staff analytics. Also touched upon are questions of the risks that accompany the introduction of this technology.

Keywords

Contributors

  • Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny w Katowicach, Katowice, Polska
author
  • Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny w Katowicach, Katowice, Polska

References

  • Angrave D., Charlwood A., Kirkpatrick I., Lawrence M., Stuart M. (2016), HR and analytics: why HR is set to fail the big data challenge, Human Resource Management Journal, vol. 26, z. 1.
  • Aschenbrenner A., Miksch S. (2005), Blog mining in a corporate environment, Research Studios Austria, Technical Report, <http://ieg.ifs.tuwien.ac.at/techreports/Asgaard-TR-2005-11.pdf>.
  • Bersin J. (2013), The Datafication of Human Resources, Forbes, lipiec.
  • Bersin J., Houston J., Kester B. (2014), Talent analytics in practice. Go from talking to delivering on big data, w Global Human Capital Trends 2014, Engaging the 21st-century workforce, Deilotte University Press, <https://dupress.deloitte.com/dup-us-en/focus/human-capital-trends/2014/hc-trends-2014-talent-analytics.html>.
  • Borne K. (2014), Top 10 Big Data Challenges – A Serious Look at 10 Big Data V’s, <https://mapr.com/blog/top-10-big-data-challenges-serious-look-10-big-data-vs/>.
  • Buyck I., Vanhoomissen T., Bonroy B., Mertens M., van Daele T. (2016), Carewear: the potential of wearable technology in stress and burnout management, International Conference on Sustainable Employability, Bruksela.
  • Capgemini (2015), People Analytics Improving HR Processes with Advanced Analytics and Big Data, Capgemini Report, <https://www.capgemini.com/resources/people-analytics-improving-hr-processes-with-advanced-analytics-and-big-dat>.
  • Conklin C., Abebe N., Petrelli J. (2016), Population health management: a new business model for a healthier workforce, w 2016 Workplace trends, Sodexo White Paper,<http://sodexoinsights.com/wp-content/uploads/2016/03/Workplace%20Trends%202016%20Final.pdf>.
  • Conway D. (2010), The Data Science Venn Diagram, <http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram>.
  • Davenport T., Harris J., Shapiro J. (2010), Competing on Talent Analytics, Harvard Business Review, październik.
  • Deilotte (2015), Global Human Capital Trends 2015, Leading in the new world of work, Deloitte University Press, <http://www2.deloitte.com/content/dam/Deloitte/at/Documents/human-capital/hc-trends-2015.pdf>.
  • Edwards M., Edwards K. (2016), Predictive HR Analytics: Mastering the HR Metric, London, Kogan Page Publishers.
  • Fitz-Enz J. (2010), The new HR analytics – Predicting the economic value of your company’s human capital investments, New York, American Management Association.
  • Forsyth A. (2015), Watson Analytics Use Case for HR:Retaining valuable employees, IBM Watson Analyst Community, <https://www.ibm.com/communities/analytics/watson-analytics-blog/watson-analytics-use-case-for-hr-retaining-valuable-employees>.
  • Firican G. (2017), The 10 Vs of Big Data, <https://tdwi.org/Articles/2017/02/08/10-Vs-of-Big-Data.aspx>.
  • Gandomi A., Haider M. (2015), Beyond the hype: Big data concepts, methods, and analytics, International Journal of Information Management, vol. 35, z. 2.
  • Garvin D. A. (2013), How Google Sold Its Engineers on Management, Harvard Business Review, <https://hbr.org/2013/12/how-google-sold-its-engineers-on-management>.
  • Grillo M., Hackett A. (2015), What types of predictive analytics are being used in talent management organizations?, Cornell University, ILR School, <http://digitalcommons.ilr.cornell.edu/student/74>.
  • Grossman R., Siegel K. (2014), Organizational models for big data and analytics, Journal of Organization Design, nr 3 (1).
  • Hall B. (2014), Google's Project Oxygen Pumps Fresh Air Into Management, TheStreet, <https://www.thestreet.com/story/12328981/1/googles-project-oxygen-pumps-fresh-air-into-management.html>.
  • Hesketh A. (2014a), Microsoft: The four stages of analytical life: HRBI at Microsoft, White paper, <http://www.valuingyourtalent.com/media/Case%20study%20-%20Microsoft%20-%20PDF_tcm1044-5903.pdf>.
  • Hesketh A. (2014b), Talent’s talent for creating talent at ArcelorMittal White paper, <http://www.valuingyourtalent.com/media/Case%20study%20-%20ArcelorMittal%20-%20PDF_tcm1044-5901.pdf>.
  • Jakubowski P., Wilk W. (2014), Analiza predykcyjna jako źródło wiedzy do zarządzania talentami, prezentacja IBM Business Connect <https://www-01.ibm.com/events/wwe/grp/grp030.nsf/vLookupPDFs/CHRO_Analityka%20w%20HR/$file/CHRO_Analityka%20w%20HR.pdf>.
  • Kania K., Zacny B. (2010), Systemy Business Intelligence w Firmie 2.0, w Kania K. (red.), Technologie Informatyczne Firmy 2.0, Katowice, Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach.
  • Larose D. T., Markov Z. (2007), Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage, New Jersey, John Wiley & Sons.
  • Maher M. (2014), Are Managers Obsolete? A Look at Google’s Project Oxygen. OpenView, <http://labs.openviewpartners.com/are-managers-obsolete-google-project-oxygen/#.WJ2cgDhX2ON>.
  • Marr B. (2013), From Data to Decisions. Lessons from the field, Chartered Professional Accountants of Canada, < https://www.cpacanada.ca/en/business-and-accounting-resources/management-accounting/management-reporting-needs-and-systems/publications/evidence-based-management-a-three-part-series/evidence-based-management-case-studies>.
  • Marr B. (2016), Walmart: How Big Data is Used to Drive Supermarket Performance, w Big Data in Practice: How 45 Successful Companies Used Big Data Analytics to Deliver Extraordinary Results, Wiley, 2016.
  • Mauro A.,de, Greco M., Grimaldi M. (2015), What is Big Data? A Consensual Definition and a Review of Key Research Topics, AIP Conference Proceedings.
  • McLean S., Stakim C., Timner H., Lyon C. (2015), Big Data and Human Resources: Letting the Computer Decide?, Washington, D.C., The Bureau of National Affairs Inc.
  • Meyer-Schonberger V., Cukier K. (2014), Big Data. Rewolucja, która zmieni nasze myślenie, Helion, 2014.
  • Morrison M. (2012), Google’s Project Oxygen – 8 point plan to help managers improve. RapidBi, <https://rapidbi.com/google-project-oxygen-8-point-plan-to-help-managers/>.
  • Morrison S. (2009), Google Searches for Staffing Answers, Wall Street Journal, 19 maja.
  • Pang B., Lee L. (2008), Opinion Mining and Sentiment Analysis, Foundations and Trends in Information Retrieval, nr 2 (1–2).
  • Pocztowski A. (2008), Zarządzanie zasobami ludzkimi: Strategie-procesy-metody, Warszawa, PWE.
  • Puget J. (2015), Optimization Is Ready For Big Data: Part 4, Veracity, <https://www.ibm.com/developerworks/community/blogs/jfp/entry/optimization_is_ready_for_big_data_part_4_veracity?lang=en>.
  • Rasmussen T., Ulrich D. (2015), Learning from practice: how HR analytics avoids being a management fad, Organizational Dynamics, nr 44.
  • Redmond S., Lovell N., Yang G., Horsch A., Lukowicz P., Murrugarra L., Marschollek M. (2014), What Does Big Data Mean for Wearable Sensor Systems?, Contribution of the IMIA Wearable Sensors in Healthcare, IMIA Yearbook of Medical Informatics, nr 9 (1).
  • Rist O. (2016), The Best Data Visualization Tools of 2016, PC Magazine, sierpień.
  • Saradhi V., Palshikar G. (2011), Employee churn prediction, Expert Systems with Applications, nr 38.
  • Sparrow P., Hird M., Cooper C. (2015), Do We Need HR? Repositioning People Management for Success, Basingstoke, Palgrave Macmillan.
  • Stevenson C. (2012), Five Ways High-Performance Organizations Use HR Analytics, <https://www.i4cp.com/trendwatchers/2012/12/12/five-ways-high-performance-organizations-use-hr-analytics>.
  • Tuhin S., Prithwis D. (2015), Predictive Analytics in HR: A Primer, TATA Consultancy Services, <http://www.tcs.com/SiteCollectionDocuments/White-Papers/Predictive-Analytics-HR-0115-1.pdf>.
  • Ward J., Barker A. (2013), Undefined By Data: A Survey of Big Data Definitions, preprint arXiv:1309.5821, <http://www.adambarker.org/papers/bigdata_definition.pdf>.
  • Ware J. (2016), Big data in the workplace: can it enhance employee productivity and quality of life? 2016 Workplace trends, <http://sodexoinsights.com/wp-content/upload¬s/2016/03/Workplace%20Trends%202016%20Final.pdf>.
  • Woźniak J. (2016), Media społecznościowe jako narzędzie e-rekrutacji względem osób z różnych generacji – rozważania metodologiczne i pilotaż badań, Zarządzanie Zasobami Ludzkimi, nr 6 (113).
  • Zang S., Ye M. (2015), Human Resource Management in the Era of Big Data, Journal of Human Resource and Sustainability Studies, nr 3.
  • Żółtaszek A. (2014), Modele mikrosymulacyjne. Teoria i zastosowania ekonomiczno-społeczne, Łódź, Wydawnictwo Uniwersytetu Łódzkiego.

Document Type

Publication order reference

Identifiers

ISSN
2543-4411

YADDA identifier

bwmeta1.element.desklight-8f1b436e-a43f-4fb2-9814-803e175f46eb
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.