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Abstract

This paper is a follow-up to a previous work where we defined and generated the set of all possible compromises of multilevel
multiobjective linear programming problems (ML-MOLPP). We introduce a new algorithm to solve ML-MOLPP in which
the adaptive method of linear programming is nested. First, we start by generating the set of all possible compromises (set
of all non-dominated solutions). After that, an algorithm based on the adaptive method of linear programming is developed
to select the best compromise among all the possible settlements achieved. This method will allow us to transform the initial
multilevel problem into an ML-MOLPP with bonded variables. Then, apply the adaptive method which is the most efficient
to solve all the multiobjective linear programming problems involved in the resolution process instead of the simplex method.
Finally, all the construction stages are carefully checked and illustrated with a numerical example.

Keywords: multilevel programming, multiobjective linear programming, adaptive method, sub-optimality estimate, non-

dominated solutions, non-dominated facets

1. Introduction

In decision-making, mathematical programming has long been restricted to problems having only one
main objective, or a variety of objectives treated by striving to achieve them simultaneously. It is assumed
that all the objectives are those of a single decision-maker who controls all decision variables [6, 9,
11, 16, 20, 24]. New decision-making problems have emerged with a supplementary structure, these
are problems in which several decision-makers interact within a hierarchical structure, each seeking to
optimize a multiobjective problem. Consequently, a new field of decision-making theory appeared called
multilevel mathematical programming [19, 23].
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The principle of solving multilevel programming problems is that the first-level decision-maker
(FLDM) sets its goal and/or decision, and then asks each subordinate level of the organization for its
optimum, calculated in isolation. The lower-level decision-maker’s decisions are then submitted and
modified by the FLDM taking into account the overall benefits to the organization. The process contin-
ues until a satisfactory solution (also called satisfactory compromise) is found. Multilevel programming
problems have several applications in different branches such as supply chain management, network
defense, planning, logistics, economics, government, autonomous institutions, agriculture, military, man-
agement, schools, hospitals, and banks. Although most research on multilevel programming has focused
on cases involving only two levels (called bilevel programming) [1, 14, 18, 25], there are many program-
ming problems that involve more than two levels [3, 10, 12, 15].

Since the pioneering study of Bracken and McGill [4, 5], several researchers have published mono-
graphs and literature surveys in which theoretical and methodological aspects of two-level optimization
were discussed. Many approaches have been developed to solve multilevel programming problems. For
an extensive bibliography of these problems and their applications, see [2, 12, 13, 15, 23]. In 2003,
a methodology using the fuzzy goal programming (FGP) approach was proposed by Sinha to solve the
linear/non-linear multilevel decentralized programming problems (ML(D)PP) as described in [22]. The
method is subjective because it depends on the tolerance values given to the decision variables controlled
by a decision-maker (DM). It is costly over time due to the calculation of the bound of the decision
variables and the increase in the number of constraints. In their paper [23], Sinha and Sinha introduced
a linear programming approach applicable to any linear ML(D)PP. This is an improved version of Sinha’s
method, as it does not depend on the subjectivity of the higher-level DM, it provides a solution that is
close to the ideal/optimal solution of each DM.

In his paper [3], Baky extends the FGP approach introduced by Mohamed [17] to solve ML-MOLPPs.
The formulation of the FGP models begins by determining the fuzzy goals of the objectives by finding
individual optimal solutions. They are then characterised by the associated membership functions; so also
are the membership functions for vectors of fuzzy goals of the decision variables, controlled by DMs at
the top levels. Moreover, by introducing over- and under-deviational variables and assigning aspiration
levels to each membership function, they are transformed into fuzzy flexible membership goals. Then,
the FGP is used to achieve the maximum value for each of the membership goals by minimizing their
deviational variables and thus achieving the most satisfactory solution for all decision-makers.

In this study, we consider an ML-MOLPP where the objective functions and the constraints are linear.
We exploit the algorithm described by Kaci and Radjef in [10] to generate the entire set of all possible
compromises. Then, we use the principle of the adaptive method to propose a new procedure for solving
this last. The adaptive method of linear programming is a numerical constructive method described by
Gabasov et al. in the late 1980s [7, 8]. It was generalized to develop many methods on piece-wise linear
programming, quadratic programming [21], optimal control, multiobjective linear programming [6, 20],
and multilevel multiobjective linear programming.

The simplex method is a numerical method developed in 1947 for solving linear programming prob-
lems, where the feasible region S is constructed from only linear constraints Ax = b and non-negativity
constraints x ≥ 0. If the linear program contains additional constraints of the form:
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l ≤ x ≤ u (1)

then, we say that we are dealing with a linear programming problem with bounded variables. So, to
solve this problem, we have to transform the constraints (1) into linear constraints, which will increase
the size of the matrix A. Therefore, Gabasov develops the adaptive method to solve this kind of problem
by handling the constraints (1) as such, and without modifying the matrix A. That made the adaptive
method more efficient than the simplex method.

The key idea of this study is to involve constraints of the form (1) in order to exploit the adaptive
method. In other words, transform the problem (2) into a multilevel multiobjective linear programming
problem with bounded variables.

The adaptive method in all its versions is dedicated to the resolution of linear programming problems
with bounded variables. So, the basic idea of the algorithm we’re building here is to determine the
bounds of decision variables, then apply the latter instead of the simplex method. To achieve this, we
first generate the set of all the possible compromises of the ML-MOLPP. As this one is not convex,
we choose a convex subset called the sorting set on which the resolution process will be performed.
Finally, we define the components of the lower bound of decision variables as the minimum between the
components of the corners of the sorting set, similarly, the upper bound vector will be defined using the
maximum operator.

In this paper, we propose a contribution in the area of multilevel multiobjective linear programming,
which involves generalizing the adaptive method for solving ML-MOLPPs. First, we start by generat-
ing the set of all the non-dominated extreme points N̂dex of all the multiobjective linear programming
problems that constitute the ML-MOLPP using the Yu and Zeleny’s method [26]. Then, we generate the
set of all possible compromises N̂ using the procedure described by Kaci and Radjef in [10]. After that,
a sorting set will be chosen (a convex subset of N̂ ) as a new feasible region and we put the bounds of
all decision variables. Finally, we start the search for the satisfactory compromise from a chosen sorting
set by solving P − 1 standard linear multiobjective programming problems with bounded variables using
the adaptive method algorithm for multiobjective linear programming problems described in Section 3.1,
see also [20].

This paper is structured as follows: First, the mathematical problem is formulated in the next Section.
In Section 3, we present some preliminary, that is to say, non-dominated solutions, and recall the adaptive
method algorithm for solving multiobjective linear programming problems (MOLPP), as well as some
necessary results and notations. In Section 4, we build an algorithm that generalizes the adaptive method
algorithm to solve an ML-MOLPP. After that, we illustrate the method with a numerical example within
Section 5. Finally, a conclusion is given in Section 6.

2. Problem formulation

Consider a P -level multiobjective linear programming problem (P ≥ 2), and denote DMp the decision-
maker at pth level that has control over the decision variables xp = xp1, . . . , xpnp ∈ Rnp , p = 1, . . . , P ,
where x = ( x1, . . . , xP )t, n = n1 + . . .+ nP .
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Let k = k1 + . . .+ kP , we define

Fp : Rn1 × Rn2 × . . .× RnP 7−→ Rkp

x 7−→ Fp(x) = cpx

where

cp =


cp1

cp2
...

cpkp

 =


c11p1 . . . c1n1

p1 c21p1 . . . c2n2
p1 . . . cP1

p1 . . . cPnP
p1

c11p2 . . . c1n1
p2 c21p2 . . . c2n2

p2 . . . cP1
p2 . . . cPnP

p2
...

...
...

...
...

...
c11pkp . . . c1n1

pkp
c21pkp . . . c2n2

pkp
. . . cP1

pkp
. . . cPnP

pkp

 , p = 1, . . . , P

and

cpqx = c1jpq x1 + c2jpq x
2 + . . .+ cPj

pq xP , p = 1, . . . , P, q = 1, . . . , kp, j = 1, . . . , np

= c11pqx11 + . . .+ c1n1
pq x1n1 + c21pqx21 + . . .+ c2n2

pq x2n2 + . . .+ cP1
pq xP1 + . . .+ cPnP

pq xPnP

cpjpq = cp1pq, c
p2
pq, . . . , c

pnp
pq , p = 1, . . . , P, q = 1, . . . , kp

The formulation of a P -level multiobjective linear programming problem is given as follows:

Level 1. max
x1

F1(x) = max
x1


c11x

c12x
...

c1k1x


such that x2, . . . , xP solves

Level 2. max
x2

F2(x) = max
x2


c21x

c22x
...

c2k2x


...
such that xP solves

Level P. max
xP

FP (x) = max
xP


cP1x

cP2x
...

cPkPx



(2)

subject to
x ∈ S = {x ∈ Rn : Ax ≤ b, x ≥ 0, b ∈ Rm}

where S ≠ ∅ is the multilevel convex constraints feasible choice set, m is the number of constraints,
kp is the number of objective functions for the DMp’s, cijpq are constants, A is an (m× n) matrix and b is
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an m vector. We assume that m < n, and that the feasible region S is a compact polyhedron (a closed
and bounded subset of Rn).

3. Preliminaries

In this section, we recall some important results on multilevel multiobjective linear programming and
present the adaptive method which is a variant of the direct support method of solving multiobjective
linear programming problems with bounded variables, we will also set some notations. For more details,
see [10, 26].
Notation 1. For any x ∈ S, we use xi to indicate its ith coordinate, also called its ith component, and
we define the following sets of indexes:

I = {1, 2, . . . , m} , J = {1, 2, . . . , n} , M = {1, 2, . . . , n+m}

J = JB ∪ JN , JB ∩ JN = ∅, |JB| = m, |JN | = n−m

This allows us to write the partition of x and A as follows:

x = x(J) = (xj, j ∈ J) , x =

(
xN

xB

)
xN = x(JN) = (xj, j ∈ JN), xB = x(JB) = (xj, j ∈ JB)

and
A = (AN , AB), AN = A(I, JN), AB = A(I, JB)

The decision variable vectors x ∈ S will be considered as column vectors, xt refers to the transposition
of x, which is a row vector. The x > 0 and x ≥ 0 ratings indicate that all x components are positive
and not negative, respectively. For two vectors x1 and x2, the x1 > x2 notation means x1 − x2 > 0. The
x1 ≥ x2, x1 < x2, x1 ≤ x2 . . . notations should be interpreted accordingly.

Remark 1

• Let p = 1, . . . , P and consider the pth problem which constitutes the multilevel problem 2 as
follows

max
xp

Fp(x) = cpx (3)

Then, obviously problem 3 is not a real MOLPP. Indeed, the maximization occurs with respect to
certain decision variables xp = xp1, . . . , xpnp only.

• Since the direction of the objective function is not always maximization, we could write optimize.
However, we choose the maximum operator to simplify the comprehension of this study.

In the following, we will treat problems 3 as real multiobjective programming problems. Thus, con-
sider the following multiobjective linear programming problem:

max
x∈S

Fp(x) = cpx (4)
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Definition 1. Let Zp be the DMp’s criteria space defined as follows:

Zp =
{
z ∈ Rkp : z = cpx, x ∈ S

}
Then, for z1, z2 ∈ Zp, we say that z1 dominates over z2 if z1 ≥ z2.
For the feasible solutions x1, x2 ∈ S, we say that x1 dominates over x2 if cpx1 ≥ cpx

2.
A feasible solution x ∈ S is non-dominated if it is not dominated by any other feasible point of S.

Notation 2

• Np denotes the set of all non-dominated feasible solutions of problem (4).
• Since the feasible region S is a compact polyhedron, then it has a finite number of vertices (also

called extreme points). We denote the set of all extreme points of S by Sdex.
• We denote the set of all non-dominated extreme points (a non-dominated feasible solution that

belongs to Sdex) of problem (4) by:

Ndex
p = Sdex ∩Np

and Ndx
p will denote an arbitrary element of Ndex

p .
• Let Ã denote a ((n+m)× n) matrix in which the first m rows correspond to the rows of the matrix
A and the last rows to the n non-negativity constraints (xij ≥ 0, i = 1, . . . , P, j = 1, . . . , ni); b̃ be
a (n+m) vector with b̃i = bi for i = 1, . . . ,m and b̃i = 0 for i = m+ 1, . . . , m+ n, which means:

Ã =

(
A

−Idn

)
, b̃ =


b

0

0
...
0


where Idn is the identity matrix of order n.

Definition 2. Let Q ⊆ M , ÃQ be the matrix derived from Ã by deleting the rows which are not indexed
in Q, similarly b̃Q is derived.

Then, we call a facet of S, the set defined by

F (Q) =
{
x ∈ S : ÃQx = b̃Q

}
and we call a non-dominated facet of S, the set defined by

Np(Q) = Np ∩ F (Q)

Definition 3. We define the set of all possible compromises (non-dominated feasible solutions) of
ML-MOLPP as follows
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N̂ =
P⋂

p=1

Np (5)

Similarly, we define the set of all non-dominated extreme points of a ML-MOLPP as the set of com-
mon non-dominated extreme points among all the sets Np, that is:

N̂dex =
P⋂

p=1

Ndex
p (6)

Assume that N̂ ̸= ∅, and define the following set of all subsets Q of M that corresponds to non-empty
facets F (Q) of the feasible region S contained in N̂ :

N̂ =
{
Q ⊂ M : F (Q) ̸= ∅ and F (Q) ⊆ N̂

}
Notation 3. The facet corresponding to a subset Q of N̂ is called non-dominated facet for ML-MOLPP,
and denoted by

N̂(Q) =
P⋂

p=1

Np(Q)

It is clear that for two subsets Q1 and Q2 in N̂ verifying Q1 ⊂ Q2, we have F (Q2) ⊆ F (Q1). In
order to eliminate all the facets F (Q2) that are contained in bigger one F (Q1), we define a new set Ñ
that contains the elements of N̂ which do not contain any other subset of N̂ as follows:

Ñ =
{
Q ∈ N̂ : for all Q

′ ∈ N̂ and Q ̸= Q
′
, we have: Q

′ ̸⊂ Q
}

Definition 4. A facet F (Q), such that Q ∈ Ñ is called sorting set for ML-MOLPP and denoted by
SP .

3.1. The adaptive method for solving multiobjective
linear programming problems with bounded variables

Consider the following multiobjective linear programming problem with bounded variables:
max

x
cpx

Ax ≤ b

l(p) ≤ x ≤ u(p)

(7)

After adding the slacks variables to the linear constraints (Ax ≥ b), we get Bx = b, where
B = (A, Idm), and Idm is the identity matrix of size m × m. To simplify the presentation, we will
not change the notation of the decision variable vector x and the matrix cp. The use of the matrix B

means that x, l(p), u(p) are an (n + m) vector and cp =
(
cp, 0kp×m

)
, where 0kp×m is a matrix of size

(kp ×m) with components equal to zero. Then, the problem (7) becomes
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max

x
cpx

Bx = b

l(p) ≤ x ≤ u(p)

(8)

where l(p), u(p) are a (n + m) vectors such that for all i ≥ n + 1, l(p)i = 0 and u
(p)
i = α, α is a larger

positive number chosen in advance, and |l(p)| < ∞, |u(p)| < ∞.
The adaptive method algorithm to solve the problem (8) is described in the following scheme. For

more details, see [6–8, 20].

Step 1. Get a feasible solution x0 of the problem (8). If x0 exists then go to Step 2, otherwise, stopping
the problem is infeasible.

Step 2. Get the solution (y0, r0, v0, w0) of the following auxiliary mono-objective linear programming
problem 

ytb− rtcpx
0 − vtl(p) + wtu(p) → min

ytB + rtcp − vt + wt = stcp

y ∈ Rm, r ≥ 0, w ≥ 0, v ≥ 0

(9)

where st = (1, . . . , 1) ∈ Rkp .

Step 3. Get the vector λp = (r0 + s), and go to Step 4.

Step 4. Elicit the following mono-objective linear programming problem
max

x
λt
pcpx

Bx = b

l(p) ≤ x ≤ u(p)

(10)

Step 5. Solve the linear programming problem (10) using the adaptive method algorithm for mono-
objective linear problems described in [8], to get a solution (non-dominated extreme point) of the
problem (8).

4. The adaptive method for ML-MOLPP resolution

In this section, we describe an algorithm that generalizes the adaptive method of linear multiobjective pro-
gramming problems described in Section 3.1, in order to solve an ML-MOLPP by choosing a satisfactory
solution from a sorting set SP chosen previously.

4.1. Algorithm construction

Phase 1

1. Generate the set of all possible compromises N̂ of a ML-MOLPP using the method described
in [10].
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2. Choose a sorting set SP ⊂ N̂ and assume that |N̂dex| ≥ 2, SP ≠ N̂dex and SP ≠ ∅.

Define the set of extremes points of the set SP as follows:

SPdex := N̂dex ∩ SP =
{
Ndx1 , . . . , Ndxs

}
(11)

where s is the cardinal of SPdex.

Phase 2

1. Put the bounds of each of the n decision variables and slack variables as follows:

lij = min
t∈{1, ..., s}

{
Ndxt

ij

}
, uij = max

t∈{1, ..., s}

{
Ndxt

ij

}
, i = 1, . . . , P, j = 1, . . . , ni

l(P+1)j = 0, u(P+1)j = α, j = n+ 1, . . . , n+m
(12)

where α is an arbitrary larger positive number chosen previously.

2. Put l(1)ij = lij , u
(1)
ij = uij for all i = 1, . . . , P , j = 1, . . . , ni.

3. Put nP+1 = m and consider the following n+m bounds of the decision and slack variables

l
(1)
ij ≤ xij ≤ u

(1)
ij , i = 1, . . . , P + 1, j = 1, . . . , ni (13)

4. Put p = 1.

5. Define the new feasible region as follows:

Sp =
{
x ∈ SP : l

(p)
ij ≤ xij ≤ u

(p)
ij

}
6. Solve the following multiobjective linear programming problem with bounded variables:

max
x∈Sp

cpx (14)

Denote by
c
x
p

the solution of the linear programming problem (14).

7. The DMp chooses 2np positive parameters lpj and rpj for j = 1, . . . , np. Then, define the new
bounds of decision variables that are under his control as follows:

l
(p)
pj =

c
x
p

pj −lpj and u
(p)
pj =

c
x
p

pj +rpj (15)

such that
c
x
p

pj −lpj ≥ l
(1)
pj and

c
x
p

pj +rpj ≤ u
(1)
pj (16)

8. p = p+ 1.

9. If p > P , then stop with a satisfactory compromise
c
x
p

of the multilevel linear programming
problem (2). Otherwise, go to Step 5.
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4.2. Full algorithm

This is a simplified version (second formulation) of the resolution algorithm described in Section 4.1.

Phase 1

1. Apply the procedure described by Kaci and Radjef in [10] to generate the entire compromises
set N̂ of ML-MOLPP.

2. Choose a sorting set SP ⊂ N̂ and elicit the set SPdex.

Phase 2

Step 1. Set p = 1.

Step 2. Formulate the constraints (13).

Step 3. Formulate the model (14).

Step 4.

– Solve the model (14) using the adaptive method algorithm described in Section 3.1.
– Let

c
x
p

denote the solution of the linear programming problem (14).

Step 5. Set p = p+ 1.

Step 6. If p > P , then stop with a satisfactory compromise
c
x
p

of the multilevel linear program-
ming problem (2). Otherwise, go to Step 7.

Step 7. Choose lp1, . . . , lpnp and rp1, . . . , rpnp such that the proprieties (16) holds in the Step 8.

Step 8. Set the 2np new constraints (15), then go to Step 3.

4.3. Resolution process of ML-MOLPP with bounded variables

Multilevel programming problems are characterized by the presence of a hierarchical structure, that is,
the presence of several decision-makers seeking a compromise. They are ranked by priority, the first
decision-maker DM1, the second decision-maker DM2,. . ., P th decision-maker DMP (the last).

The DM1 solves his multiobjective problem, depending on the solution he gets, he will impose con-
straints that ensure that any solutions that may appear in the following items do not leave a region he has
defined. Then, he gives these new constraints to the DM2 who will do the same; solve his problem, and
choose a new region (subset of the region established by the previous decision-maker). So, the process
continues until the solution is found. Therefore, the resolution process is as follows.

We start by transforming the problem (2) into an ML-MOLPP with bounded variables by defining the
bounds l(0) and u(0) of the decision variables as indicated by equations (12).

Consider the following positive component of the vectors l(0) and u(0) respectively,

l
(0)
11 , . . . , l

(0)
1n1

, l
(0)
21 , . . . , l

(0)
2n2

, . . . , l
(0)
P1, . . . , l

(0)
PnP

and

u
(0)
11 , . . . , u

(0)
1n1

, u
(0)
21 , . . . , u

(0)
2n2

, . . . , u
(0)
P1, . . . , u

(0)
PnP
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Iteration 1. The first decision-maker begins by optimizing his objective function (the first objective
function F1) subject to the feasible region S and constraints (1). That means, DM1 solve the following
multiobjective problem: 

max
x

F1(x) = c1x

Ax ≤ b

l(0) ≤ x ≤ u(0)

(17)

He gets his satisfactory solution denoted by
c
x
1
=
(

c
x
1

11,
c
x
1

12 . . . ,
c
x
1

1n1
,
c
x
1

21 . . . ,
c
x
1

P1, . . . ,
c
x
1

PnP

)
. Then,

impose new constraints on the decision variables that are under his control:

c
x
1

11,
c
x
1

12, . . . ,
c
x
1

1n1

by choosing 2n1 reals numbers l(1)11 , l(1)12 , . . ., l(1)1n1
, u(1)

11 , u(1)
12 , . . ., u(1)

1n1
which verify

l
(0)
11 ≤ l

(1)
11 < u

(1)
11 ≤ u

(0)
11

l
(0)
12 ≤ l

(1)
12 < u

(1)
12 ≤ u

(0)
12

...
...

...
...

...
...

...
l
(0)
1n1

≤ l
(1)
1n1

< u
(1)
1n1

≤ u
(0)
1n1

Define the new constraints as follows

l
(1)
11 ≤ x11 ≤ u

(1)
11

l
(1)
12 ≤ x12 ≤ u

(1)
12

...
...

...
...

...
l
(1)
1n1

≤ x1n1 ≤ u
(1)
1n1

(18)

Iteration 2. The second decision-maker solves his multiobjective problem subject to the feasible region
S and constraints (1) and (18). That is, solve the following multiobjective linear problem:

max
x

F2(x) = c2x

Ax ≤ b

l(1)
11 ≤ x11 ≤ u(1)

11

l(1)
12 ≤ x12 ≤ u(1)

12
...

...
...

...
...

l(1)
1n1

≤ x1n1 ≤ u(1)
1n1

l
(0)
21 ≤ x21 ≤ u

(0)
21 1

...
...

...
...

...
l
(0)
2n2

≤ x2n2 ≤ u
(0)
2n2

...
...

...
...

...
l
(0)
PnP

≤ xPnP
≤ u

(0)
PnP

(19)
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The DM2 obtains his satisfactory solution denoted by

c
x
2
=
(

c
x
2

11,
c
x
2

12 . . . ,
c
x
2

1n1
,
c
x
2

21 . . . ,
c
x
2

P1, . . . ,
c
x
2

PnP

)
Then, define new constraints on the decision variables that are under his control

c
x
2

21,
c
x
2

22, . . . ,
c
x
2

2n2

by choosing 2n2 reals numbers l(2)21 , l(2)22 , . . ., l(2)2n2
, u(2)

21 , u(2)
22 , . . ., u(2)

2n2
which verify

l
(0)
21 ≤ l

(2)
21 < u

(2)
21 ≤ u

(0)
21

l
(0)
22 ≤ l

(2)
22 < u

(2)
22 ≤ u

(0)
22

...
...

...
...

...
...

...
l
(0)
2n2

≤ l
(2)
2n2

< u
(2)
2n2

≤ u
(0)
2n2

Define the new constraints as follows

l
(2)
21 ≤ x21 ≤ u

(2)
21

l
(2)
22 ≤ x22 ≤ u

(2)
22

...
...

...
...

...
l
(2)
2n2

≤ x2n2 ≤ u
(2)
2n2

(20)

Iteration 3. The 3rd decision-maker solves his multiobjective problem subject to the feasible region S

and constraints (1), (18) and (20). That is, solve the following multiobjective linear problem

max
x

F3(x) = c3x

Ax ≤ b

l(1)
11 ≤ x11 ≤ u(1)

11

l(1)
12 ≤ x12 ≤ u(1)

12
...

...
...

...
...

l(1)
1n1

≤ x1n1 ≤ u(1)
1n1

l(2)
21 ≤ x21 ≤ u(2)

21

l(2)
22 ≤ x22 ≤ u(2)

22
...

...
...

...
...

l(2)
2n2

≤ x2n2 ≤ u(2)
2n2

l
(0)
31 ≤ x31 ≤ u

(0)
31

...
...

...
...

...
l
(0)
PnP

≤ xPnP
≤ u

(0)
PnP

(21)

The DM3 obtains his satisfactory solution denoted by

c
x
3
=
(

c
x
3

11,
c
x
3

12 . . . ,
c
x
3

1n1
,
c
x
3

21 . . . ,
c
x
3

P1, . . . ,
c
x
3

PnP

)
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Then, define new constraints that will be considered by the next decision-makers DM4, . . ., DMP .
Iteration 4 → P. The process of resolution continues until a satisfactory compromise is reached in
P th level.

5. Numerical example

Consider the following two-level multiobjective linear programming problem:

Level 1. max
x1=x1

(
f11(x) = 2x1 + 2x2, f12(x) = −1

2
x1 +

7

25
x2, f13(x) = −1

5
x1 +

1

2
x2

)
(22)

such that x2 solves

Level 2. max
x2=x2

(f21(x) = x1 + 3x2, f22(x) = −2x1 − 1x2, f23(x) = x2) (23)

subject to
x ∈ S =

{
x ∈ R2 : Ax ≤ b, x ≥ 0, b ∈ R7

}
where

A =



−2 1

−1 2

0 1

1 0

−1 −2

3 −4

1 −2


, x =

(
x1

x2

)
, b =



3

9

6

6

−9

7

2


Phase 1

1. The set of all the compromises of the ML-MOLPP (23) is equal to

N̂ = H
(
Ndx1 , Ndx2

)
∪H

(
Ndx2 , Ndx3

)
where H (., .) denote the convex hull of any two points, the extremes points are

Ndx1 = (6, 6), Ndx2 = (3, 6), Ndx3 = (1, 5)

2. Choose the sorting set SP equal to

SP = H
(
Ndx2 , Ndx3

)
Then, we get

SPdex =
{
Ndx2 = (3, 6), Ndx3 = (1, 5)

}
For more information about the calculation, refer to the numerical example in [10].

Phase 2. We put p = 1, then:
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Iteration 1

1. The constraints (13) are given by

l(1) = (1, 5), u(1) = (3, 6)

2. Consider the following multiobjective programming problem:
max

x
c1x

Ax ≤ b

l(1) ≤ x ≤ u(1)

(24)

where

c1 =


2 2

−1

2

7

25

−1

5

1

2


3. Using the adaptive method algorithm described in Section 3.1, solve the multiobjective

linear programming problem with bounded variables (24). We start the adaptive method
with the initial feasible solution

x0 =

(
2,

11

2

)
Then, we get the compromise

c
x
1
=
(
2, 11

2

)
of 1st−level decision-maker.

4. Choose l1 = r1 = 0.5.

Iteration 2

1. Put

l(2) = x0 − (l1, l1) =

(
2,

11

2

)
− (0.5, 0.5) =

(
3

2
, 5

)
u(2) = x0 + (r1, r1) =

(
2,

11

2

)
+ (0.5, 0.5) =

(
5

2
, 6

)
2. Consider the following multiobjective linear programming problem:

max
x

c2x

Ax ≤ b

l(2) ≤ x ≤ u(2)

(25)

where

c2 =


1 3

−2 −1

0 1


3. Take the initial feasible solution (

5

2
,
23

4

)
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Then, use the adaptive method to solve the multiobjective linear programming problem
(25) to get a satisfactory compromise of the two-level multiobjective linear programming
problem (23) equal to:

c
x
2
=

(
5

2
,
23

4

)

6. Conclusion

In this study, the adaptive method for solving multiobjective linear problems is generalized to solve ML-
MOLPP, we presented an algorithm that searches for a single satisfactory compromise on a convex subset
SP (sorting sets) of the set of all possible compromises N̂ of our choice (because N̂ may be made up of
several sorting sets). A detailed presentation of the method was followed by a numerical example.

We show that the adaptive method continues to prove its importance in linear programming concern-
ing the diversity of problems in which it is applicable since it was never been used to solve multilevel
programming problems before namely the ML-MOLPP which was the main focus of this study, where
the presence of bounded variables in the initial problem is no longer a requirement, they are established
in the construction of the method.

Our main concern in this study was to give the construction of our approach based on the adaptive
method that can be applied to the set of all possible compromises. We will try in the near future to
examine its robustness and report on the numerical results.
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