2018 | 9 | 2 | 311-317
Article title

Entropodynamiczny filtr percentylowy

Title variants
Entropodynamic Percentyle Filter
Languages of publication
W pracy opisano implementację oraz analizę eksperymentalną algorytmu Entropodynamicz-nego Filtra Percentylowego, pozwalającego na detekcję szumu w obrazach o wielu składowych spektralnych. Kostka danych wizualnych jest przetwarzana tak, aby wygenerować, niezależnie dla każdej składowej spektralnej, mapę krawędzi, która pozwala na oszacowanie informacji o rozkładzie entropii w spektrum. Filtr percentylowy oddziela nośniki szumu od warstw wysoce informacyjnych. Jakość metody jest weryfikowana dzięki serii testów wykonanych dla zadania klasyfikacji.
Following work describes the implementation and experimental evaluation of the Entropodynamic Percentile Filter algorithm, allowing the detection of noise in images with many spectral components. The visual data block is processed to generate an edge map, independent of each spectral component, which makes possible the estimation of the information on the distribution of entropy in the spectrum. An appropriately constructed percentile filter separates noise carriers from highly informative layers. The quality of the method is verified with a series of experiments performed for the classification task.
Physical description
  • Doktor inżynier, Politechnika Wrocławska, Wydział Elektroniki, Katedra Systemów i Sieci Kom-puterowych, Polska
  • Aggarwal, H.K., Majumdar, A. (2016). Hyperspectral Image Denoising Using Spatio-Spectral Total Variation. IEEE Geoscience and Remote Sensing Letters, 13 (3), 442–446.
  • Davies, E.R. (2004). Machine Vision. Amsterdam: Elsevier.
  • Dougherty, E.R. (1992). An Introduction to Morphological Image Processing. Bellingham: Society of Photo Optical.
  • Ertürk, A. (2016). Sparse Unmixing Based Denoising for Hyperspectral Images. W: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (p. 7006–7009). Beijing.
  • Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C. (2013). Advances in Spectral-Spatial Classification of Hyperspectral Images. Proceedings of the IEEE, 101 (3), 652–675. Pobrane z: (20.12.2017).
  • Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale, B.J. i in. (1998). Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of Environment, 65 (3), 227–248.
  • Moses, W.J., Bowles, J.H., Lucke, R.L., Corson, M.R. (2012). Impact of Signal-to-noise Ratio in a Hyperspectral Sensor on the Accuracy of Biophysical Parameter Estimation in Case II Waters. Optics Express, 20 (4), 4309–4330. Pobrane z: (20.12.2017).
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O. i in. (2011). Scikitlearn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
  • Perona, P., Malik, J. (1990). Scale-space and Edge Detection Using Anisotropic Diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (7), 629–639. Pobrane z: (20.12.2017).
  • Stumpf, R.P., Werdell, P.J. (2010). Adjustment of Ocean Color Sensor Calibration Through Multiband Statistics. Optics Express, 18 (2), 401–412. Pobrane z: (20.12.2017).
  • Wei, Q., Bioucas-Dias, J.M., Dobigeon, N., Tourneret, J.-Y. (2015). Hyperspectral and Multispec-tral Image Fusion Based on a Sparse Representation. IEEE Trans. Geoscience and Remote Sensing, 53 (7), 3658–3668. Pobrane z: (20.12.2017).
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.