2014 | 6(131) | 97–116
Article title

Application of composite indicators and nonparametric methods to evaluate and improve the efficiency of the technical universities

Title variants
Languages of publication
Publicly funded universities, like commercial organizations are obliged to ensure their efficiency This article presents a model to measure and assess the relative efficiency of technical universities. The analysis was performed using publically available data from 2011 for 18 universities using the Composite indicators method and the SBM Data Envelopment Analysis model. Fourteen indicators for efficiency were defined in the five areas of the university performance: research, teaching, scientific staff development, quality of teaching processes and public funding. inefficient units were identified, based on their calculated efficiency scores and the directions for change to allow them to reach greater efficiency were suggested. Methods used to assess efficiency allowed the combined effect of all relevant factors to be taken into account which described the basic operations of the university.
Physical description
  • Faculty of Management and Economics, Gdańsk University of Technology
  • Abbott, M. and Doucouliagos, H. (2004). Research output of Australian universities. Education Economics, 12(3), 251–265.
  • Antonowicz, D. and Gorlewski, B. (2011). Demograficzne tsunami. Raport na temat wpływu zmian demograficznych na szkolnictwo wyższe do 2020 roku [Demographic tsunami. Report on the impact of demographic changes on higher education by 2020]. Warszawa: Instytut Rozwoju Kapitału Intelektualnego im. Sokratesa.
  • Charnes, A., Cooper, W. W. and Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 6(2), 429–444.
  • Cherchye, L., Moesen, W., Rogge, N., Van Puyenbroeck, T., Saisana, M., Saltelli A., Liska, R. and Tarantola, S. (2006). Creating composite indicators with DEA and robustness analysis: the case of the Technology Achievement Index. Retrieved from htttp:// econover/Papers/DPS0603.pdf
  • Coelli, T., Rao, P., O’Donnell, Ch. and Battese, G. (2005). An introduction to efficiency and productivity analysis. New York, NY: Springer.
  • Cook, W. D., Tone, K. and Zhu, J. (2014). Data envelopment analysis: prior to choosing a model. Omega – International Journal of Management Science, 44, 1–4.
  • Cooper, W.W., Seiford, L. M. and Zhu, J. (2011). Handbook on Data Envelopment Analysis. New York, NY: Springer.
  • Cooper, W. W., Seiford, L. M. and Tone, K. (2007). Data Envelopment Analysis: a comprehensive text with models, applications, references and DEA-Solver software. New York, NY: Springer.
  • Ćwiąkała-Małys, A. (2010). Pomiar efektywności procesu kształcenia w publicznym szkolnictwie akademickim [Measuring the efficiency of public higher education in the academic]. Wrocław: Wydawnictwo Uniwersytetu Wrocławskiego.
  • Debreu, G. (1951). The coefficient of resource utilization. Econometrica, 19(3), 273–292.
  • Decancq, K. and Lugo, M. A. (2010). Weights in multidimensional indices of well-being: an overview. Discussions Paper Series (DPS) 10.06. Leuven: Center for Economic Studies, Katholieke Universitet Leuven.
  • Despotis, D. K. (2005). Measuring human development via Data Envelopment Analysis: the case of Asia and the Pacific. Omega – The International Journal of Management Science, 33(5), 385–390.
  • Domagała, A. (2007). Metoda Data Envelopment Analysis jako narzędzie badania względnej efektywności technicznej. Badania operacyjne i decyzje, 3–4, 21–34.
  • Dziennik Ustaw Nr 84 (2011). Ustawa z dnia 18 marca 2011 r. o zmianie ustawy – Prawo o szkolnictwie wyższym, ustawy o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki oraz o zmianie niektórych innych ustaw [The Act of 18 March 2011 amending the Act – Law on Higher Education, the Law on Academic Degrees and Title and Degrees and Title in the field of art and amending certain other acts]. Retrieved from
  • Farell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society, 120(3), 253–290.
  • Filippetti, A. and Peyrache, A. (2011). The patterns of technological capabilities of countries: a dual approach using composite indicators and Data Envelopment Analysis. World Development, 39(7), 1108–1121.
  • Główny Urząd Statystyczny [GUS] (2012). Szkoły wyższe i ich finanse w 2011 roku [Universities and their finances in 2011]. Warszawa: GUS.
  • Główny Urząd Statystyczny (2013). Bank Danych Lokalnych [Local Data Bank]. Retrieved from
  • Guzik, B. (2009a). Podstawowe modele DEA w badaniu efektywności gospodarczej i społecznej [Basic DEA models in the study of economicand social efficiency]. Poznań: Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu.
  • Guzik, B. (2009b). Podstawowe możliwości analityczne modelu CCR-DEA [Basic analytical capabilities CCR-DEA model]. Badania operacyjne i decyzje, 1, 55–75.
  • Haas, D. A. and Murphy, F. H. (2003). Compensating for non-homogeneity in decision-making units in data envelopment analysis. European Journal of Operational Research, 144(3), 530–544.
  • Hollingsworth, B. and Smith, P. (2003). Use of ratios in data envelopment analysis. Applied Economics Letters, 10(11), 733–735.
  • Kao, C. and Hung, H. T. (2008). Efficiency analysis of university departments. An empirical study. Omega – The International Journal of Management Science, 36(4) 653–664.
  • Kempkes, G. and Pohl, C. (2010). The efficiency of German universities – some evidence from nonparametric and parametric methods. Applied Economics, 42(16), 2063–2079.
  • Koopmans, T. C. (1951). Analysis of production as an efficient combination of activities. In T. C. Koopmans (ed.), Activity analysis of production and allocation. New York, NY: Wiley.
  • Leitner, K. H., Prikoszovits, J., Schaffhauser-Linzatti, M., Stowasser, R. and Wagner, K. (2007). The impact of size and specialization on universities’ department performance: a DEA analysis applied to Austrian universities. Higher Education, 53(4), 517–538.
  • Liu, J. S., Lu, L. Y. Y., Lu, W. M. and Lin, B. J. Y. (2013). A survey of DEA applications. Omega – The International Journal of Management Science, 41(5), 893–902.
  • Lukman, R., Krajnc, D. and Glavic, P. (2010). University ranking using research, educational and environmental indicators. Journal of Cleaner Production, 18(7), 619–628.
  • Lovell, K. C. A. (1995). Measuring the macroeconomic performance of the Taiwanese economy. International Journal of Production Economics, 39(1–2), 165–178.
  • Manca, A. R., Governatori, M. and Mascherini, M. (2010). Towards a set of composite indicators on flexicurity: a comprehensive approach. European Union: European Commission, Joint Research Centre.
  • Mansfield, E. (1995). Academic research underlying industrial innovations: sources, characteristics, and financing. The Review of Economics and Statistics, 77(1), 55–65.
  • Marginson, S. (2014). University rankings and social science. European Journal of Education, 49(1), 45–59.
  • Mascherini, M. and Manca A. R. (2009). Towards a set of composite indicators on flexicurity: the composite indicator on active labour market policies. European Commission: Joint Research Centre, European Communities.
  • Mohamad, N. H. and Said, F. B. (2011). Comparing macroeconomic performance of OIC member countries. International Journal of Economics and Management Sciences, 3(1), 90–104.
  • Murias, P., Miguel, J. C. de and Rodriguez, D. (2008). A composite indicator for university quality assessment: the case of Spanish higher education system. Social Indicators Research, 89(1), 129–146.
  • OECD (2008). Handbook on constructing composite indicators. methodology and user guide. Paris: OECD Publications.
  • Paruolo, P., Saisana, M. and Saltelli, A. (2013). Ratings and rankings: voodoo or science? Journal of the Royal Statistical Society. Series A, Statistics in Society, 176(3), 609–634.
  • Ranking szkół wyższych [Ranking of universities ] (2013). Retrieved from
  • Saisana, M., d’Hombres, B. and Saltelli, A. (2011). Rickety numbers: volatility of university rankings and policy implications. Research Policy, 40(1), 165–177.
  • Salter, A. J. and Martin, B. R. (2001). The economic benefits of publicly funded basic research: a critical review. Research Policy, 30(3), 509–532.
  • Shen, Y., Ruan, D., Hermans, E., Brijs, T., Wets, G. and Vanhoof, K. (2011). Modeling qualitative data in data envelopment analysis for composite indicators. International Journal of System Assurance Engineering and Management, 2(1), 21–30.
  • Shwartz, M., Burgess, J. F. and Berlowitz, D. (2009). Benefit-of-the-doubt approaches for calculating a composite measure of quality. Health Services and Outcomes Research Methodology, 9(4), 234–251.
  • Stiglitz, J. E. (2004). Ekonomia sektora publicznego [Economics of the public sector]. Warszawa: Wydawnictwo Naukowe PWN.
  • Tarantola, S. and Mascherini, M. (2009). Handbook on constructing composite indicators. San Sebastian: EUSTAT–Euskal Estatistika Erakundea–Instituto Vasco de Estadística.
  • Tauer, L. W., Fried, H. O. and Fry, W. E. (2007). Measuring Efficiencies of academic departments within a college. Education Economics, 15(4), 473–489.
  • Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3), 498–509.
  • Zrelli, N. and Hamida1 B. (2013). Efficiency and quality in higher education. A dynamic analysis. Research in Applied Economics, 5(4), 116–130.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.