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ON KERNEL SMOOTHING AND  
HORVITZ-THOMPSON ESTIMATION 
 
 
Introduction 
 

Design-based estimation of population parameters usually relies on the 
knowledge of inclusion probabilities characterizing the sampling scheme. These are 
needed to construct sampling weights that form the well-known Horvitz-Thompson 
estimator of the population total and estimates for other parameters of interest. 
Sometimes, the complexity of sampling scheme prevents the exact calculation of 
inclusion probabilities. Such a situation arises for example for spatial sampling 
schemes (Fattorini and Ridolfi, 1997) some order sampling schemes (Rosen, 
1997; Aires, 2000) as well as in fixed-cost sequential sampling where the com-
position of the sample depends on individual costs of sampled units (Pathak, 
1976; Kremers, 1985).  

The lack of exact inclusion probabilities does not necessarily render the 
Horvitz-Thompson statistic useless, since the statistician still possesses the 
knowledge of the sampling procedure used to draw the sample. When all the 
information needed to carry out sampling is readily available (such as: auxiliary 
variable values, unit sampling costs, adjacency matrix in spatial sampling), Fat-
torini (2006) proposes to conduct a simulation study and to estimate unknown 
inclusion probabilities, by drawing large numbers of sample replications and 
then counting appearances of individual units. By replacing unknown inclusion 
probabilities with estimates an alternative statistic known as empirical Horvitz-   
-Thompson estimator is obtained.  

Estimation of inclusion probabilities by simple sample proportions (or some 
statistics functionally dependent on it) usually requires large numbers of sample 
replications to achieve desired accuracy of Horvitz-Thompson estimates. Hence 
it appears reasonable to employ some form of strength-borrowing to capitalize 
on available auxiliary information and to improve accuracy of the simulation-
based Horvitz-Thompson statistic. In this paper a nonparametric strength-
borrowing technique is proposed for sampling schemes where first order inclu-
sion probabilities satisfy simple ordering constraints. The fixed-cost sequential 
sampling scheme of Pathak (1976) is used as an example. 
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1. Estimators 
 

Let the finite population be represented as a set of unit indices U={1, ... N}. 
Also, let y1 , ... , yN represent fixed values of some characteristic of interest and let 

∑ ∈= iUi yt  be the population total to be estimated. An unordered sample s is 

drawn from U using some sampling scheme characterized by a set of first-order 
inclusion probabilities π1, ... ,πN where )si(Pi ∈=π  for i∈U. If inclusion proba-
bilities were known, a design-unbiased Horvitz-Thompson estimator for t would 
be easily calculated from s according to the formula: 

∑
∈ π

=
si i

iy
t̂   (1) 

When inclusion probabilities are impossible to calculate exactly, one may 
use the known sampling scheme to generate M independent sample replications 
s1, ... ,sM ⊆U. For i∈U let  

}si:M,...,1r{#k ri ∈∈=   (2) 

be the number of replications containing the i-th unit. A very simple estimate of 
πi is the sample proportion: 

M
kˆ i

i =π  for i∈s  (3) 

However, when plugged into the formula (1) in place of πi it could lead to 
division by zero if ki = 0 for some i∈s. Such an event would require the i-th unit 
not to be drawn at all to any replication and is extremely unlikely for large M, 
but formally it prevents moments of the Horvitz-Thompson statistic from being 
computed. Hence, Fattorini (2006) proposes to estimate the inclusion probability 
πi by the statistic: 

1M
1kˆ i

iF +
+

=π  for i∈s  (4) 

and to estimate the population total t through the estimator: 

∑
∈ π

=
si iF

i
F ˆ

yt̂   (5) 

He derives an exact formula for its bias and a tight upper bound for the me-
an square error. However, as noted by the same author, the number of replica-
tions needed to guarantee high accuracy of this statistic may still be very large. 
This justifies efforts aimed at finding an alternative method of estimating πi. Let 
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us notice, that during the simulation experiment involving generation of M repli-
cations, one may calculate estimates of inclusion probabilities not only for units 
in the sample s, but in fact for all N population units at negligible additional cost. 
Hence, any known relationships between individual inclusion probabilities cor-
responding to units included in s and units not included in s may be utilized to 
improve accuracy of estimates. In particular, such relationships may take the 
form of multiple inequality: 

N21 ... π≤≤π≤π   (6) 

As a simple example one may consider the well-known Pareto sampling 
scheme of Rosén (1997). By arranging population units in non-decreasing order 
with respect to known auxiliary variable on which the Pareto sampling is based one 
may easily guarantee that first-order inclusion probabilities characterizing this 
scheme satisfy the multiple inequality above. Gamrot (2012) proposed to incorpora-
te the ordering constraint into empirical Horvitz-Thompson framework by calcula-
ting restricted estimates of inclusion probabilities satisfying (6) using isotonic re-
gression algorithms such as Pool-Adjacent-Violators Algorithm (PAVA) or active 
set methods (see: Ayer et al., 1955; Robertson et al., 1988; Best and Chakravarti, 
1990) and then by replacing unknown probabilities in (1) with these restricted esti-
mates. However, isotonic regression only corrects for the breaches of ordering 
constraint (6) but it produces estimates equivalent to respective sample propor-
tion when ordering is not violated. Hence properties of PAVA-based estimates 
should differ only slightly from sample proportions for larger replication num-
bers where such violations are rare. We will now propose another method that 
may be less prone to this unwelcome effect. 

Let us start by noting that by definition we have πi∈[0,1] for i∈U. When N is 
large the ordering constraint (6) implies that either for all pairs (πi, πi+1) the differen-
ce πi+1–πi is relatively small, or at least that the number of pairs where this difference 
is relatively large is itself not large. This leads to the intuition that for large N 
a particular inclusion probability πi corresponding to the i-th population unit is 
unlikely to differ much from inclusion probabilities for its closest neighbors. 
Hence, combining probability estimates for inclusion probabilities of neighbo-
ring units may lead to better precision than using simple sample proportion. 

A kernel estimator originally proposed by Rosenblatt (1956) appears to be 
a convenient way of forming a combined estimate of any individual inclusion pro-
bability in the population. For our purposes it is constructed as a weighted mean of 
simple proportions using the formula (see: Kulczycki, 2005; Härdle, 1992): 
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where K(.) represents a certain non-negative symmetric real function having 
weak global maximum at 0 (so that K(x)=K(-x) and K(0)≥K(x) for x∈R) which 
is usually called a kernel function while h is a positive real constant known as 
smoothing factor or bandwidth. The symbol xi represents for i∈U the value of 
some auxiliary characteristic of the i-th population unit. It is natural to intuitively 
assume it to be the unit index so that xi = i for i∈U. Another more interesting 
possibility of choosing xi is discussed in the next section. Ultimately, the non-
parametric empirical Horvitz-Thompson estimator of the population total is cal-
culated according to the formula: 

∑
∈ π

=
si iK

i
K ˆ

yt̂   (9) 

Kulczycki (2005) argues, that the choice of a particular kernel function in-
fluences the accuracy of the kernel estimator (7) much less than the choice of 
bandwidth. In applications associated with sample surveys the normal kernel 
given by the formula: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2
xexp)x(K

2

  (10) 

seems to be particularly popular (Giommi, 1987). From our perspective it is 
important that (10) always takes strictly positive values. As a result, all the terms 
wij in the linear combination (7) are strictly positive. Meanwhile, if the sampling 
scheme never produces empty samples (which may be safely assumed to be 
true), then at least one population unit belongs to some replication and consequ-
ently at least one of simple proportions Nππ ˆ,...,ˆ1  is strictly positive. This means 
that all kernel estimators NKK ππ ˆ,...,ˆ1  always take strictly positive (although po-
ssibly very small) values. Such an effect guarantees the finiteness of the Horvitz-
Thompson statistic itself, and hence may be considered an advantage. In the 
following discussion it will be assumed that the normal formula (10) is used as 
a kernel.  
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As a general side note, it should also be stated that the proposed nonpara-
metric estimator does not guarantee the constraint (6) to be satisfied. Although 
the likelihood of violating this restriction by individual estimates is apparently 
lower than for simple proportions computed through (3), such violations may 
still happen relatively often. Having said that one should keep in mind that the 
constraint (6) was discussed here only in order to motivate and justify the use of 
kernel smoothing, and was not meant to be strictly imposed. 

In the following sections the proposed estimator (9) will be compared to 
other alternatives for a specific sampling design. 
 
 
2. Application to fixed-cost sampling 
 

Let us consider the fixed-cost sequential sampling scheme of Pathak (1976). 
It is characterized by varying inclusion probabilities which are generally difficult 
to calculate for larger sample sizes due to the combinatorial explosion (Schuster, 
2000). Despite the existence of some sufficiency-based design-unbiased estimators 
which do not utilize inclusion probabilities, the empirical Horvitz-Thompson esti-
mators may be of interest when nonresponse corrections need to be incorporated 
or when some modifications are made to the original scheme. In this paper the 
Pathak’s scheme in its original form illustrates the use of nonparametric empiri-
cal Horvitz-Thompson approach. The sampling procedure is carried out as fol-
lows. Let c1, ... ,cN denote known per-unit costs of observing the characteristic 
under study for individual population units. Population units are drawn to the 
sample one-by-one without replacement and with equal probabilities until the 
total cumulative cost of the sample is greater or equal to some budget constraint 
C fixed in advance. The element for which this happens is not appended to the 
sample. The sample size is random in general, but instead the variability of ran-
dom sample cost is largely limited.  

Meanwhile, it may be shown that inclusion probabilities of the first order – 
although hard to compute – constitute a non-increasing function of the per-unit 
cost, so that: 
 

jijiUj,i
cc π≥π⇒<∀

∈
  (11) 

and 

jijiUj,i
cc π=π⇒=∀

∈
  (12) 
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Consequently, by arranging population units in a non-increasing order with 
respect to individual unit cost one may easily guarantee that inclusion probabili-
ties satisfy the ordering constraint (6). This suggests that for most population 
units their inclusion probabilities should not differ dramatically from those 
having similar cost. This in turn justifies the use of nonparametric empirical Horvitz-
Thompson estimator (9) for the population total, with costs c1, ... , cN treated as 
auxiliary variables x1, ... , xN in (8). 
 
 
3. A simulation study 
 

A simulation study was carried out in order to compare performance of the pro-
posed non-parametric empirical Horvitz-Thompson estimator (9), the PAVA-based 
estimator proposed by Gamrot (2012) and the classic Fattorini’s (2006) statistic 
(5). In experiments, the finite population was represented by the data set descri-
bing 695 farms in the Gręboszów municipality of the Dąbrowa Tarnowska di-
strict obtained during the agricultural census conducted by Polish Central Stati-
stical Office in 1996. It was assumed that the cost of sampling individual units is 
strictly proportional to the farm area, which featured high positive skew and that 
the budget constraint C is equal to five percent of the total cost of exhaustively 
enumerating the whole population.  

The simulation experiment accounted for two sources of randomness, na-
mely the randomness of the actual sample s, and the randomness of inclusion 
probability estimates. It was carried out by drawing 20000 samples and execu-
ting an independent simulation study involving 300 sample replications for each 
such sample to arrive at population total estimates. Figure 1 shows the observed 
relative bias (RBIAS) of kernel-based estimates for h = 0.2, 0.4, ... , 30. Figure 2 
shows the observed relative root mean square error (RRMSE) of kernel-based 
population total estimates for h = 0.2, 0.4, ... , 30. The corresponding levels of 
RRMSE’s for PAVA-based Horvitz-Thompson estimator and for Fattorini’s 
statistic are also shown in the Figure 2. 

The relative bias of the proposed estimator exhibits rather complex be-
havior. For very small h it takes values very close to zero, but quite unstably 
fluctuating between positive and negative values. With growing h at first it also 
quickly grows, reaching 0.00537 for h = 4.2 but then it steadily decreases to 
reach 0.00010 for h=17.6 to finally slowly increase again for h>17.6. The biases 
of PAVA-based estimator and Fattorini’s statistic do not depend on h and they 
are respectively equal to 0.00801 and –0.06470 with the absolute value of the 
latter obviously the greatest of all for any h. Hence one may conclude that for 
any h = 0.2, 0.4, ... , 30 the proposed estimator clearly dominated the other two 
by a wide margin in terms of bias.  
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Figure 1. Relative bias of the proposed estimator for h = 0.2, 0.4, ... , 30. 
 

The relative root mean square error of the proposed estimator also exhibited 
rather complicated behavior, reflecting to some extent the tendencies in the bias. 
It took the maximum value of 0.13877 for h = 0.1, but also featured two local 
minima around h = 1.2 and h = 15.8. For h = 15.8 it was equal to 0.12896 which 
is respectively about 12% and 3% lower than RRMSE’s of PAVA-based estima-
tor and Fattorini’s statistic. 
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Figure 2. Relative root mean square errors of three population total estimators for h = 0.2, 0.4, ... , 30 
 
 
Conclusion 
 

Presented simulation results suggest that proposed nonparametric empirical 
Horvitz-Thompson estimator of the population total constitutes an attractive 
alternative to its two counterparts, especially in terms of bias reduction. The 
main challenge for it to gain a wider popularity most likely lies in choosing an 
optimal value for the smoothing factor h. In our study it could easily be chosen 
through simulation on the basis of known values of the characteristic under stu-
dy in the whole population. In practice of the field work the statistician does not 
possess such information and would have to resort to using cross-validation or 
the plug-in method of Sheather and Jones (1991). Nevertheless the wide range of 
h-values for which the proposed estimator dominates its counterparts in terms of 
bias and mean square error seems to justify such approach.  
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ON KERNEL SMOOTHING AND  
HORVITZ-THOMPSON ESTIMATION 

 
Summary 

 
Estimation of the total value of fixed characteristic of interest in a finite population 

is considered for a complex sampling scheme featuring unknown inclusion probabilities. 
The general empirical Horvitz-Thompson statistic is adopted as an estimator for the 
unknown total. In the presence of additional knowledge on inclusion probabilities taking 
form of inequality constraints it is proposed to use the well-known kernel estimator for 
individual inclusion probabilities. For a fixed-cost sequential sampling scheme this leads 
to a new nonparametric empirical Horvitz-Thompson estimator of a total. Its properties 
are compared to known alternatives in a simulation study. 




