Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2018 | 542 | 201-212

Article title

Testy toksyczności jako uzupełnienie monitoringu na składowiskach odpadów komunalnych

Content

Title variants

EN
Toxicity tests as a supplement to monitoring at municipal landfills

Languages of publication

PL

Abstracts

PL
Celem artykułu było przedstawienie potrzeby zastosowania testów toksyczności do oceny odcieków pochodzących ze składowisk odpadów komunalnych. Z prowadzonych obecnie badań wchodzących w skład monitoringu składowisk odpadów komunalnych trudno jest precyzyjnie określić, jakie związki chemiczne mogą znajdować się w odciekach oraz jaki wpływ mogą wywierać na organizmy bytujące w środowisku. Badania te, oparte w całości na parametrach fizykochemicznych, nie obrazują rzeczywistego zanieczyszczenia wód, ponieważ większość związków obecnych w odciekach pozostaje nieznana i stanowi potencjalne zagrożenie. Autor zarekomendował wykorzystanie dwóch rodzajów testów do badań odcieków ze składowisk odpadów komunalnych, prowadzonych na V. fischeri i D. magna, m.in. ze względu na niski koszt oraz łatwość przeprowadzonych badań. Zwraca również uwagę na fakt, że poszczególne składniki odcieków mogą wywoływać odmienne reakcje, powodując synergiczne lub antagonistyczne efekty toksyczne, które nie zostaną zidentyfikowane za pomocą analiz fizykochemicznych, a mogą zostać wykryte za pomocą testów toksyczności.
EN
The aim of this article is to present the need to use toxicity tests to assess the waste water from municipal landfills. It is difficult to determine precisely what chemical compounds can be found in leachate and what impact they can have on organisms living in the environment. These studies, based entirely on physicochemical parameters, do not illustrate the actual water pollution. The author recommended the use of two types of tests to test leachate from municipal waste dumps, carried out on V. fischeri and D. magna, among others due to the low cost and ease of the research carried out. The author draws attention to the fact that individual components of leachate may cause different reactions, causing synergistic or antagonistic toxic effects, which will not be identified by physicochemical analyses, but may be detected by means of toxicity tests.

References

  • Abbas M., Adil M., Ehtisham-ul-Haque S., Munir B.,Yammen M., Ghaffar A., Abbas Shar G., Tahr M.A., Iqbal M., 2018, Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review, Science of The Total Environment, vol. 626.
  • Amor C., Torres-Socia E., Peres A., Maldonado L.M., Oller I., Malato S., Lucas M.S., 2015, Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo- Fenton processes, Journal of Hazardous Materials, vol. 286.
  • Araújo C.V., Nascimento R.B., Oliveira C.A., Strotmann U.J., da Silva E.M., 2005, The use of Microtox® to assess toxicity removal of industrial effluents from the industrial district of Camaçari (BA, Brazil), Chemosphere, vol. 58, no. 9.
  • Aruoja V., Sihtmäe M., Dubourguier H.-C., Kahru A., 2011, Toxicity of 58 substituted anilines and phenols to algae Pseudokirchneriella subcapitata and bacteria Vibrio fischeri: comparison with published data and QSARs, Chemosphere, vol. 84, no. 10.
  • Attanasio R., 2018, Understanding the Daphnia magna – microbiota crosstalk is an essential step to improve ecotoxigenomics-based testing, Integrated Environmental Assessment and Management, vol. 14, no. 1.
  • Barata C., Baird D.J., Miñarro A., Soares A.M.V.M., 2000, Do genotype responses always converge from lethal to non-lethal toxicant exposure levels? A hypothesis tested using laboratory Daphnia magna Straus clones, Environ. Toxicol. Chem., no. 19.
  • Barata C., Baird D.J., Nogueira A.J.A., Soares A.M.V.M., Riva M.C., 2006, Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment, Aquat. Toxicol., no. 78.
  • Barrozo E.R., Fowler D.A., Beckman M.L., 2015, Exposure to D2-like dopamine receptor agonists inhibits swimming in Daphnia magna, Pharmacol. Biochem. Behav, no. 137.
  • Baun A., Ledin A., Reitzel L.A., Bjerg P.L., Christensen T.H., 2004, Xenobiotic organic compounds in leachates from ten Danish MSW landfills – chemical analysis and toxicity tests, Water Research, vol. 38, no. 18.
  • Boas Berg A., Radziemska M., Adamcová D., Zloch J., Vaverkov M.D., 2018, Assessment strategies for municipal selective waste collection – regional waste management, Journal of Ecological Engineering, vol. 19, no. 1.
  • Boluda R., Quintanilla J.F., Bonilla J.A., Sáez E., Gamón M., 2002, Application of the Microtox® test and pollution indices to the study of water toxicity in the Albufera Natural Park (Valencia, Spain), Chemosphere, vol. 46, no. 2.
  • Bortolotto T., Bertoldo J.B., da Silveira F.Z., Defaveri T.M., Silvano J., Pich C.T., 2009, Evaluation of the toxic and genotoxic potential of landfill leachates using bioassays, Environ. Toxicol. Pharmacol., vol. 28.
  • Bownik A., 2017, Daphnia swimming behaviour as a biomarker in toxicity assessment: a review, Sci. Total Environ., no. 601–602.
  • Brohon B., Gourdon R., 2000, Influence of soil microbial activity level on the determination of contaminated soil toxicity using LUMIStox® and MetPlate bioassays, Soil Biology and Biochemistry, vol. 32, no. 6.
  • Chen S.S., Sun Y., Tsang D.C., Graham N.J.D., Ok Y.S., Feng Y., Li X.-D., 2017, Potential impact of flowback water from hydraulic fracturing on agricultural soil quality: metal/metalloid bioaccessibility, Microtox® bioassay, and enzyme activities, Sci. Total Environ., vol. 579.
  • Cieszyńska-Semenowicz M., Rogowska J., Ratajczyk W., Ratajczyk J., Wolska L., 2018, Toxicity studies of elemental sulfur in marine sediments, International Journal of Sediment Research, vol. 33, no. 2.
  • Cui R., Chae1 Y., An Y.-J., 2017, Dimension-dependent toxicity of silver nanomaterials on the cladocerans Daphnia magna and Daphnia galeata, Chemosphere, vol. 185.
  • Deprez K., Robbens J., Nobels I., Vanparys C., Vanermen G., Tirez K., Michiels L., Weltens R., 2012, DISCRISET: a battery of tests for fast waste classification – application of tests on waste extracts, Waste Manag., vol. 32, no. 12.
  • Dom N., Knapen D., Benoot D., Nobels I., Blus R., 2010, Aquatic multi-species acute toxicity of (chlorinated) anilines: Experimental versus predicted data, Chemosphere, vol. 81, no. 2.
  • Downey L., Van Willigen M., 2005, Environmental stressors: the mental health impacts of living near industrial activity, Journal of Health and Social Behavior, vol. 46, no. 3.
  • Dyrektywa Rady 1999/31/WE z 26 kwietnia 1999 r. w sprawie składowania odpadów, Dz.Urz.UE.L 182 z 16 lipca 1999 r.
  • El-Fadel M., Bou-Zeid E., Chahine W., Alayli B., 2002, Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content, Waste Management, vol. 22, no. 3.
  • Environment Canada EPS 1/RM/14 Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna, 2000, https://www.ec.gc.ca/faunescience-wildlifescience/default.asp?lang=En&n=CF33F86F-1.
  • Fan H.J., Shu H.Y., Yang H.S., Chen W.C., 2006, Characteristics of landfill leachates in central Taiwan, Sci. Total Environ., vol. 361, no. 1–3.
  • Farré M., Barceló D., 2003, Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis, TrAC Trends in Analytical Chemistry, vol. 22, no. 5.
  • Fernández-González J.M., Grindlay A.L., Serrano-Bernardo F., Rodríguez-Rojas M.I., Zamorano M., 2017, Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities, Waste Manage., vol. 67.
  • Gao L., Wang Z., Li S., Chen J., 2018, Bioavailability and toxicity of trace metals (Cd, Cr, Cu, Ni, and Zn) in sediment cores from the Shima River, South China, Chemosphere, vol. 192.
  • Gao M., Zhang Z., Lv M., Song W., Lv Y., 2018, Toxic effects of nanomaterial-adsorbed cadmium on Daphnia magna, Ecotoxicology and Environmental Safety, vol. 148.
  • Ghosh P., Thakur I.S., Kaushik A., 2017, Bioassays for toxicological risk assessment of landfill leachate: A review, Ecotoxicology and Environmental Safety, vol. 141.
  • Girotti S., Ferri E.N., Fumo M.G., Maiolini E., 2008, Monitoring of environmental pollutants by bioluminescent bacteria, Analytica Chimica Acta, vol. 608, no. 1.
  • Grygorczuk-Petersons E.H., Wiater J., 2016, Effect of sealed municipal waste landfill on the quality of underground water, Journal of Ecological Engineering, vol. 17, no. 1.
  • Hassan S.H. A., Ginkel S.W. van, Hussein M.A.M., Abskharon R., Oh S.-E., 2016, Toxicity assessment using different bioassays and microbial biosensors, Environment International, vol. 92–93.
  • Hernandez-Fernandez F.J., Bayo J., Peres de los Rios A., Vincente M.A., Bernal F.J., Quesada-Medina J., 2015, Discovering less toxic ionic liquids by using the Microtox® toxicity test Ecotoxicol, Environ. Saf., vol. 116.
  • Hernando M.D., Vettori S. de, Martínez Bueno M.J., Fernández-Alba A.R., 2007, Toxicity evaluation with Vibrio fischeri test of organic chemicals used in aquaculture, Chemosphere, vol. 68, no. 4.
  • Jennings V.L.K., Rayner-Brandes M.H., Bird D.J., 2001, Assessing chemical toxicity with the bioluminescent photobacterium (Vibrio fischeri): a comparison of three commercial systems, Water Research, vol. 35, no. 14.
  • Kheradmand S., Karimi-Jashni A., Sartaj M., 2010, Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system, Waste Management, vol. 30, no. 6.
  • Kim K.T., Klaine S.J.,Cho J., Kim S-H., Kim S.D., 2010, Oxidative stress responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction, Science of The Total Environment, vol. 408, no. 10.
  • Koc-Jurczyk J., Jurczyk Ł., Urbańska M., 2018, Effect of technological conditions on removing organic substances from landfill leachates, Journal of Ecological Engineering, vol. 19, no. 1.
  • Kumar Tripathy B., Kumar M., 2017, Suitability of microwave and microwave-coupled systems for landfill leachate treatment: An overview, Journal of Environmental Chemical Engineering, vol. 5, no. 6.
  • Lari E., Gauthier P., Mohaddes E., Pyle G.G., 2017, Interactive toxicity of Ni, Zn, Cu, and Cd on Daphnia magna at lethal and sub-lethal concentrations, J. Hazard Mater., vol. 334.
  • Liu Y., Guo R., Tang S., Zhu F., Zhang S., Yan Z., Chen J., 2018, Single and mixture toxicities of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 on the feeding activity of Daphnia magna: From behavior assessment to neurotoxicity, Chemosphere, vol. 195.
  • Manakul P., Peerakietkhajorn S., Matsuura T., Kato Y., Watanabe H., 2017, Effects of symbiotic bacteria on chemical sensitivity in Daphnia magna, Marine Environmental Research, vol. 128.
  • OECD Guideline for Testing of Chemicals. Test No. 202: Daphnia Sp. Acute Immobilisation Test OECD Publishing, Paris, France (2004).
  • Öman C.B., Junestedt C., 2008, Chemical characterization of landfill leachates – 400 parameters and compounds, Waste Management, vol. 28, no. 10.
  • Palmiotto M., Fattore E., Paiano V., Celeste G., Colombo A., Davoli E., 2014, Influence of a municipal solid waste landfill in the surrounding environment: toxicological risk and odor nuisance effects, Environment International, vol. 68.
  • Park J., Ra J.-S., Rho H., Cho J., Kim S.D., 2018, Validation of a biotic ligand model on site-specific copper toxicity to Daphnia magna in the Yeongsan River, Korea, Ecotoxicology and Environmental Safety, vol. 149.
  • Parvez S., Venkataraman C., Mukherji S., 2006, A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals, Environment International, vol. 32, no. 2.
  • Persoone G., Baudo R., Cotman M., Blaise C., Thompson K.C., Moreira-Santos M., Vollat B., Torokne A., Han T., 2009, Review on the acute Daphnia magna toxicity test – evaluation of the sensitivity and the precision of assays performed with organisms from laboratory cultures or hatched from dormant eggs, Knowl. Managt. Aquat. Ecosyst., vol. 393.
  • Piontek M., Walczak B., Czyżewska W., Lechtów H., 2012, Miedź, kadm i cynk w pyle drogowym miast oraz określenie toksyczności związków tych metali metodą biologiczną, KOSMOS, tom 61, nr 3.
  • Pretti C., Chiappe C., Baldetti I., Brunini S., Monni G., Intorre L., 2009, Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio, Ecotoxicol. Environ. Saf., vol. 72.
  • Raghab S., Meguid A., Hegazi H.., 2013, Treatment of leachate from municipal solid waste landfill, HBRC Journal, vol. 9.
  • Rozporządzenie Ministra Środowiska z 30 kwietnia 2013 r. w sprawie składowisk odpadów, Dz.U. z 2013, poz. 523.
  • Silva A.C., Dezotti M., Sant’Anna Jr. G.L., 2004, Treatment and detoxification of a sanitary landfill leachate, Chemosphere, vol. 55.
  • Steinkey D., Lari E., Woodman S.G., Luong K.H., Wong C.S., Pyle G.G., 2018, Effects of gemfibrozil on the growth, reproduction, and energy stores of Daphnia magna in the presence of varying food concentrations, Chemosphere, vol. 192.
  • Thomas D.J.L., Tyrrel S.F., Smith R., Farrow S., 2009, Bioassays for the evaluation of landfill leachate toxicity, J. Toxicol. Environ. Health B, vol. 12.
  • Tišler T., Zagorc-Končan J., Cotman M., Drolc A., 2004, Toxicity potential of disinfection agent in tannery wastewater, Water Res., vol. 38.
  • Tothill I.E., Turner A.P.F., 1996, Developments in bioassay methods for toxicity testing in water treatment, Anal. Chem., vol. 15.
  • Trusz-Zdybek A., Szymycha Madeja A., Traczewska T.M., Piekarska K., 2012, Zastosowanie systemu Microtox® w bioindykacji próbek środowiskowych, KOSMOS, tom 61, nr 3.
  • Wdowczyk A., Szymańska-Pulikowska A., 2018, Analiza możliwości oceny stanu środowiska wodnego w otoczeniu składowiska odpadów komunalnych, Inżynieria Ekologiczna, vol. 19, nr 6, s. 57–64.
  • Weltens R., Deprez K., Michiels L., 2014, Validation of Microtox® as a first screening tool for waste classification, Waste Manage., vol. 34.
  • Wolska L.W., Sagajdakow A., Kuczyńska A., Namieśnik J., 2007, Application of ecotoxicological studies in integrated environmental monitoring: possibilities and problems, Trends Anal. Chem., vol. 26.
  • Yao P., 2017, Perspectives on technology for landfill leachate treatment, Arabian Journal of Chemistry, vol. 10, sup. 2.
  • Zadorozhnaya O., Kirsanov D., Buzhinsky I., Tsarev F., Abramova N., Bratov A., et al., 2015, Water pollution monitoring by an artificial sensory system performing in terms of Vibrio fischeri bacteria, Sensors and Actuators B: Chemical, vol. 207, part B.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-92b717db-255c-4874-b30a-d4aca90874bd
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.