Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


2014 | 10(17) | 33-52

Article title

On maximal social preference


Title variants

Languages of publication



Mathematics and physics are based on two numbers: Archimedes’ constant  = 3,14… and e = 2,71… – Napier’s constant. The former reflects the ratio of the perimeter of a figure to its diameter and maximizes the area, given the diameter. The solutions are the disk and the circle. The latter represents the accumulated capital paid by a bank after one year from investing one unit of money at an annual interest rate of 100% under continuous compounding. The ratio of the disk’s perimeter to its diameter, i.e. , governs omnipresent cyclical motion, whereas Napier’s constant determines natural growth – exponential growth. Nature mixes both kinds of behaviour: there is equilibrium – vortices, and the cobweb model, dynamic growth. Our general remarks are corroborated by the theory of linear differential equations with constant coefficients. Social life – democracy and quality – despite the deceptive chaos of accidental behaviour, is also governed by a beautiful numeral law. This social number is λ = ⅔ whose notation is derived from the Greek  meaning crowd, people, assembly. The social number, Łyko’s number, is defined by the fundamental theorem. If each alternative of a maximal relation of a given profile has its frequency in this profile greater than ⅔, then such relation is a group preference. This sufficient condition separates a decisional chaos from a stable economic and voting order – the preference. Also our everyday language makes use of  . We distinguish with it upper states – elitist ones, from ordinary standards. The ⅔ rule implies that in each group one third of the population prevails, while the rest are just background actors. The number  also appears, a bit of a surprise, in classical theorems of geometry.





Physical description




  • AS (2014). Ucz się, będziesz zdrowy. Angora 35. 24 August. P. 73.
  • Banasiak J. (2013). Trzy garnki za 6000 zł. Angora 39. 29 September. P. 55.
  • Brzeziński M. (2013). Rentrée. Angora 38. 22 September. P. 53.
  • Dębek K. (2014). Pomysł. Gazeta Południowa. 9 July. P. 2.
  • Gawrońska M. (2014). Jaś Fasola na tropie. Gazeta Wyborcza. 5 September. Pp. 26-27.
  • Giertych R. (2013). Ja do polityków z ofertami nie dzwonię. Angora 21. 26 May. P. 14. Info Grafika (2013). Inwestycje alternatywne. Kurier 3. Uniwersytet Ekonomiczny w Krakowie. P. 79.
  • Hackett (2004). Balanced Scorecards: Are Their 15 Minutes of Fame Over? Internet.
  • Janda K. (2013). Ja nie zwolnię, bo tak lubię. Gazeta na Wigilię. Dodatek do Gazety Wyborczej. 24 December. Pp. 4-6.
  • Koprowicz C. (2014). Sztuka oszczędzania. Newsweek Polska. 30 June. Pp. 77-79.
  • Łyko J. (2000). Twierdzenia Arrowa a ordynacje. In: A. Smoluk (ed.). Elementy metrologii ekonomicznej. Wydawnictwo Akademii Ekonomicznej we Wrocławiu. Pp. 165-168.
  • Milewski P. (2013). Zawodnik wagi ciężkiej. Newsweek Polska. 18 November. Pp. 82-84.
  • Olechowski J. (2014). Gra w zielone. Newsweek Polska. 15 September. Pp. 78-80. Reklama (2014). Zapalenia przyzębia – paradontoza. Angora 35. 24 August. P. 31.
  • Smoluk A. (2007). Podstawy analizy matematycznej. Wydawnictwo Akademii Ekonomicznej we Wrocławiu.
  • Steinborn B. (2006). Katalog zbiorów malarstwa niderlandzkiego. Muzeum Narodowe we Wrocławiu.
  • Szczepański J. (2013). Egzorcyści wracają do cienia. Gazeta Wrocławska. 6 December. P. 23.
  • The Sutton Trust (2003). Analysis of Nobel Prizes. Internet.
  • Tracy B., Kozak R. (2011). Wędrówki z Gandalfem. MT Biznes. Warszawa.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.