Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2014 | 10(17) | 103-114

Article title

Internet security

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper we present how to use the ZT-UNITAKOD method for dynamic coding. We also talk about a cryptosystem on which to base an elliptic curve. Finally, we discuss the ways to protect the internet user from phishing.

Keywords

Contributors

References

  • Blake I., Seroussi G., Smart N. (2004). Krzywe eliptyczne w kryptografii, Wydawnictwa Naukowo-Techniczne. Warszawa.
  • Boixo S., Isakov S., Wang Z., Wecker D., Lidar D., Martinis J., Troyer M. (2013). Quantum annealing with more than one hundred qubits. arXiv:1304.4595v1 [quant-ph] 16 April 2013.
  • Cai X.-D., Weedbrook C., Su Z.-E., Chen M.-C., Mile Gu, Zhu M.-J., Li Li, Nai-Le Liu, Lu C.-Y., Pan J.-W. (2013). Experimental quantum computing to solvesystems of linear equations, Physical. Review Letters 110.
  • Cranor L. (2009). Czy phishing da się zwalczyć ? „Świat Nauki”. No 1 (209).
  • Joux A. (2013). Faster index calculus for the medium prime case. Application to 1175-bit and 1425-bit finite fields. Cryptology ePrint Archive: Report 2012/720.
  • Juzwiszyn J., Wilkowski A. (2005). Kryptografia dynamiczna. Prace Naukowe Akademii Ekonomicznej. No 1096. Wrocław.
  • Khan A (2013). Preventing Phishing Attacks using One Time Password and User Machine Identification. International Journal of Computer Applications. Vol. 68. No. 3.
  • Koblitz N. (1987). Elliptic Curve Cryptosystems. Mathematics of Computation. No 48.
  • Koblitz N. (2000). Algebraiczne aspekty kryptografii. Wydawnictwa Naukowo- -Techniczne. Warszawa.
  • Miller V. (1986). Uses of Elliptic Curves in Cryptography. Advances in Cryptology. CRYPTO ’85. Proceedings. Lecture Notes in Computer Science. No 218. Springer-Verlag.
  • Mitra A. (2009). Uncontrollable random number generation is possible. arXiv:0904.3677 Fri. 24 Apr 2009.
  • Monroe Ch., Wineland D. (2008). Jonowe maszyny cyfrowe. Świat Nauki. No 9 (205).
  • Shor W. (1996). Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. arXiv:quant-ph/9508027v2 25 Jan 1996.
  • Silverman J. (1994). Advanced Topics In the Arithmetic of Elliptic Curves. Springer-Verlag.
  • Topolewski Z. (2002). Komputerowe zabezpieczenie poufności informacji w zarządzaniu. Wydawnictwo Continuo. Wrocław.
  • Wilkowski A. (2009). Elliptic curves and their uses in Internet security. Mathematical Economics. No 5(12). The Publishing House of the Wrocław University of Economics. Wrocław.
  • Yan S. (2006). Teoria liczb w informatyce. Wydawnictwo Naukowe PWN. Warszawa.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-9ce91117-e58c-47be-8a13-03f278c5263d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.