PL EN


Journal
2016 | 1 (51) | 9-19
Article title

Teoria reakcji na pozycję w podejściu modelowym w takso- nomii

Authors
Content
Title variants
EN
Item response theory in model-based clustering
Languages of publication
PL
Abstracts
EN
Item response theory is considered to be one of the two trends in methodological assessment of the reliability scale. In turn, latent class models can be viewed as a special case of model-based clustering, for heterogenous multivariate discrete data. We used the approach combining item response theory and latent class models to find groups of Polish households’ with similar saving ability levels. We analyzed data collected as part of the Polish Social Diagnosis using MultiLCIRT package of R.
Journal
Year
Issue
Pages
9-19
Physical description
Contributors
author
References
  • Adams R., Wilson M., Wang W., 1997, The multidimensional random coefficients logit, Applied Psychological Measurement, 21, s. 1-24.
  • Akaike H., 1974, A new look at statistical model identification, IEEE Transactions on Automatic Control, 19, s. 716-723.
  • Andrich D., 1978, A rating formulation for ordered response categories, Psychometrika, 43, s. 561-573.
  • Bacci S., Bartolucci F., Gnaldi M., 2014, A class of Multidimensional Latent Class IRT models for ordinal polytomous item responses, Communication in Statistics – Theory and Methods, 43, s. 787-800.
  • Bartolucci F., 2007, A class of multidimensional IRT models for testing unidimensionality and clustering items, Psychometrika, 72, s. 141-157.
  • Bartolucci F., Bacci S., Gnaldi M., 2014, MultiLCIRT: An R package for multidimensional latent class item response models, Computational Statistics and Data Analysis, 71, s. 971-985
  • Bartolucci F., Bacci S., Gnaldi M., 2015, MultiLCIRT: Multidimensional latent class Item Response Theory models. R package version 2.9, URL http://CRAN.R-project.org/package=MultiLCIRT.
  • Bąk A., 2011, Modele klas ukrytych dla danych jakościowych, [w:] E. Gatnar, M. Walesiak, Analiza danych jakościowych i symbolicznych z wykorzystaniem programu R, C.H. Beck, Warszawa, s. 204-222.
  • Birnbaum A., 1968, Some Latent Trait Models and Their Use in Inferring an Examinee’s Ability, [w:] F.M. Lord, M.R. Novick, Statistical Theories of Mental Test Scores, Addison-Wesley, Reading, MA, s. 395-479.
  • Czapiński J., Panek T. (red.), 2016, Diagnoza społeczna 2015. Warunki i jakość życia Polaków (raport), Warszawa, Rada Monitoringu Społecznego (29.01.2016).
  • Dempster A.P., Laird N.P., Rubin D.B., 1977, Maximum likelihood for incomplete data via the EM algorithm (with discussion), Journal of the Royal Statistical Society, 39, ser. B, s. 1-38.
  • Forcina A., Bartolucci F., 2004, Modelling quality of life variables with non-parametric mixtures, Environmetrics, 15, s. 519-528.
  • Genge E., 2013, Poczucie śląskości wśród Ślązaków – analiza empiryczna z wykorzystaniem modeli klas ukrytych, Ekonometria 4(42), Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu, Wrocław, s. 48-60.
  • Genge E., 2014, A latent class analysis of the public attitude towards the euro adoption in Poland, Advances in Data Analysis and Classification 8(4), Springer, s. 427-442.
  • Gnaldi M., Bacci S., Bartolucci F., 2015, A multilevel finite mixture item response model to cluster examinees and schools, Advances in Data Analysis and Classification.
  • Lazarsfeld P.F., Henry N.W., 1968, Latent Structure Analysis, Houghton Mill, Boston, MA.
  • Masters G., 1982, A Rasch model for partial credit scoring, Psychometrika, 47, s. 149-174.
  • Rasch G., 1960, Probabilistic Models for Some Intelligence and Attainment Tests, Danish Institute for Educational Reserch, Copenhagen.
  • Sagan A., 2002, Zastosowanie wielowymiarowych skal czynnikowych i skal Rascha w badaniach marketingowych (na przykładzie oceny efektów komunikacyjnych reklamy), Zeszyty Naukowe Akademii Ekonomicznej w Krakowie, 605, s. 73-92.
  • Samejima F., 1969, Estimation of ability using a response pattern of graded scores, Psychometrika Monograph, 17.
  • Schwarz G., 1978, Estimating the dimension of a model, Annals of Statistics, 6, s. 461-464.
  • Zhang J., 2004, Comparison of unidimensional and multidimensional approaches to IRT parameter estimation, ETS Research Report Series, RR-04-44, s. 1-42.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-a8834e74-0e5d-42b8-827d-2c63e1f3c2a6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.