2014 | 178 | 46-57
Article title

Rozmyte liczby przedziałowe w harmonogramowaniu przedsięwzięć metodą łańcucha krytycznego

Title variants
Fuzzy Interval Numbers in Critical Chain Scheduling
Languages of publication
Probabilistic critical path method PERT assumes beta distribution as probability distribution of task duration. PERT assumes that experts estimate parameters of task duration ("most likely time", "optimistic time", and "pessimistic time" for each activity) according to beta distribution nature. It's not always true. In the paper we assume that the durations of tasks are fuzzy sets. On the base of expert data we construct membership function of task duration. These fuzzy sets are used for project scheduling and for buffer size calculation. The illustrative example is presented
Physical description
  • Ashtiani B., Jajali G.R., Aryanezhad M.B., Makui A., 2007: A New Approach for Buffer Sizing in Critical Chain Scheduling. Proceedings of the 2007 IEEE Industrial Engineering and Engineering Management, s. 1037-1041.
  • Beliakov G., 1996: Fuzzy Sets and Memberships Functions Based on Probabilities. "Information Sciences", Vol. 91, Iss. 1-2, s. 95-111.
  • Bodjanova S., 2005: Median Value and Median Interval of a Fuzzy Number. "Information Sciences", 172, s. 73-89.
  • Dubois D., Prade H., 1978: Algorithmes de plus courts chemins pour traiter des donnees floues. RAIRO Recherché Operationelle/Operations Research 12, s. 213-227.
  • Dubois D., Prade H., 1988: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York.
  • Fallah M., Ashiani B., Aryanezhad M.B., 2010: Critical Chain Project Scheduling: Utilizing Uncertainty for Buffer Sizing. "International Journal of Research and Reviews in Applied Sciences", Vol. 3, No. 3, s. 280-289.
  • Goldratt E.M., 1977: Critical Chain. The North River Press, Great Barrington, MA.
  • Kuchta D., 2011: Zagadnienie czasu i kosztów w zarządzaniu projektami. Wybrane metody planowania i kontroli. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław.
  • Kulejewski J., Ibadov N., Zieliński B., 2011: Zastosowanie teorii zbiorów rozmytych w harmonogramowaniu robót budowlanych metodą łańcucha krytycznego. "Budownictwo i Inżynieria Środowiska", 2, s. 331-338.
  • Li K., Chen Y., 2007: Proceedings of the 2007 Applying Critical Chain in Project Scheduling and Estimating Buffer Size Based on Fuzzy Technique, Proceedings of the 2007 IEEE Industrial Engineering and Engineering Management, s. 1068-1072.
  • Ma G.-F., Yiang Y.-B., 2012: Improved Fuzzy Critical Chain Buffer Method. International Conference on Information Management, Innovation Management and Industrial Engineering, s. 240-243.
  • Millian Z., 2005: Notes of Time Buffers' Estimations in CCPM. "Archives and Civil and Mechanical Engineering", Vol. V, No. 1, s. 19-38.
  • Połoński M., Pruszyński K., 2008a: Lokalizacja buforów czasu w metodzie łańcucha krytycznego w harmonogramach robót budowlanych (cz. I) - podstawy teoretyczne. "Przegląd Budowlany", 2, s. 45-49.
  • Połoński M., Pruszyński K., 2008b: Lokalizacja buforów czasu w metodzie łańcucha krytycznego w harmonogramach robót budowlanych (cz. II) - praktyczne zastosowania. "Przegląd Budowlany" 3, s. 55-62.
  • Zadeh L.A., Fuzzy Sets, 1965: "Information and Control", Vol. 8, s. 338-353.
  • Zadeh L.A., 1973: The Concept of Linguistic Variables and Its Application to Approximate Reasoning. "Information Sciences", Vol. 8, s. 199-249.
  • Zhao Z.-Y., You W.-Y., Lv Q.-L., 2008: Application of Fuzzy Critical Chain Method in Project Scheduling. Proceedings of Forth International Conference on Natural Computation, s. 473-477.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.