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1. Introduction 

In this paper we will focus on the presentation of free distributions of 
divisor methods which have a strong position in the proportional apportion-
ment problem. They are the only methods that satisfy natural axioms and 
avoid the so-called paradoxes, i.e. unexpected and illogical properties. In 
some practical cases associated with the division of goods subject to the con-
sent of all participants, proportional allocations give way to apportionment, 
which is closer to equal proportions. This happens, for example, when the 
values of the agents participating in the division are at wide variance, and 
proportional allocations could result in disregarding the smallest agents. To 
avoid such a case, the greater agents are allocated a smaller amount of a good 
than their proportional share. This bias is in favor of smaller agents, because 
they receive more goods than their proportional amount. The resulting allo-
cations are closer to an equal division if they satisfy a further obvious condi-
tion stipulating that a greater agent may not get less than a smaller agent. 
Allocations, whose ratios of the good’s amount and the agent’s value decrease 
(do not increase) as the agent’s value increases, also satisfying the so-called 
weak monotonicity, are said to be degressively proportional (or strictly de-
gressively proportional). In cases of indivisible goods, the so-called weakly 
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degressive proportionality (known also as unrounded degressive proportion-
ality – UDP) is also considered, whose decreasing ratio of the good’s number 
to entitlement can be distorted as a result of rounding.  

In this paper we analyze the differences between weakly degressive pro-
portionality and proportional allocations at the level of axioms. Using the 
classic theorem of Balinski and Young [1982] who present the full axiomati-
zation of divisor methods, we investigate which of the five axioms are also 
satisfied in cases of a weakly degressive proportionality.  

2. Axioms of divisor methods 

Divisor methods are widely applied in the apportionment problem of in-
divisible goods, in particular regarding the allocation of seats in legislative 
bodies. Let H be the number of a good to be distributed among n agents with 
entitlements p1, p2,…, pn (pi > 0) and let V be the sum of entitlements (values) 
of these agents  V = p1 + p2 + … + pn. A divisor method is when the number 

of a good allocated to the agent with entitlement pi equals 
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and [x] denotes rounding of the number x to integer. Rounding can be up-
wards, downwards, to the nearest integer or with moving thresholds. A com-
plete theory of divisor methods, with reference to degressive proportionality, 
is given among others by Pukelsheim [2014]. Young [1995] analyzes the 
properties of divisor methods against the background of fair apportionment. 
Karpov [2008] presents the results of research into the exactness of the vari-
ous methods of proportional allocation in electoral systems. 

Example 1. Let  H = 20 be the number of a good to be allocated, entitle-

ments are given by a vector p = (1, 2, 5), and 
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i , with upwards round-

ing. The allocation of the good  H is then given by the vector s = (s1, s2, s3) = 
(3, 5, 12). One of the divisors satisfying the equation (1) is d = 9. The respec-
tive agents are allocated the following numbers of the good: s1 = 3, s2 = 5, 
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s3 = 12. Given function A from the set ( ),
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nRHpAs  is called the apportionment, where  

si = A(p, H)(pi) is the number of the good allocated in this solution to the agent 
with the entitlement pi. It is said that the agent pi gets the good si under the 
apportionment A. In all our analyzes and examples we deal with indivisible 
goods, therefore the considered apportionments are integer. At times, the al-
location function A is called just allocation for the sake of convenience. In 
the problem of proportional apportionments there are many expectations (ax-
ioms, conditions) imposed on allocation functions. We highlight five of them 
that are key in further considerations. 

Unbiasedness. The allocation A is unbiased, if A(π (p), H = π (p, H)) for 
every permutation π of n elements. Unbiasedness implies that the number of 
the good allocated to each agent is determined exclusively by the value of 
agent’s entitlement, in other words the apportionment is independent of the 
ordering of agents. 

Pairwise consistency. The allocation A is said to be pairwise consistent, 
if ith and jth coordinates of vectors A(p, H) and A((pi, pj), si + sj), where  
si = A(p, H)(pi) and sj = A(p, H)(pj), are equal. Pairwise consistency means 
that if agents with entitlements pi and pj, as a result of the allocation A, get  
si and sj of the good, respectively, therefore in cases when they are the only 
agents participating in the apportionment, and the total number of the allo-
cated good equals exactly si + sj, they would have also obtained the good si 
and sj.  

Homogeneity. The allocation A is said to be homogenous, if A(λp, H) = 
A(p, H) for every integer λ. Homogeneity therefore implies that a proportional 
increase of entitlements of all agents, at the integer scaling, does not change 
the result of apportionment. 
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Exactness. The allocation A is said to be exact, if A(p, H) = p ⋅ (H/V) 
holds always when all coordinates of the vector p ⋅ (H/V) are integer. Exact-
ness indicates that if a strictly proportional apportionment is possible, it has 
to be a result of the allocation. 

Weak monotonicity. The allocation A is said to be weakly monotone, if 
the inequality pi > pj implies the inequality si ≥ sj. Weak monotonicity indi-
cates that no agent with greater entitlement may be allocated fewer goods than 
an agent with a smaller entitlement.  
Divisor methods play a significant role in the problem of proportional appor-
tionments. They avoid the so-called paradoxes, whereas largest remainder 
methods allow the paradoxes. The remarkableness of the divisor methods is 
demonstrated by the following theorem.  

Theorem [Balinski, Young 1982]. The allocation is unbiased, pairwise 
consistent, homogenous, exact and weakly monotone if and only if it is a di-
visor method. 

Among all divisor methods, Webster’s method with rounding to the near-
est integer, is especially worth considering. To justify its remarkableness let 
us introduce the following concept. The standard apportionment among two 
agents is called the apportionment with good H distributed according to their 

entitlements p1 and p2 in quantities s1 = [q1] and s2 = [q2], where 
21
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= , and the rounding is to the nearest integer. If fractional parts   

q1 and q2 are exactly equal to 0.5, then the Webster apportionment is both 
s1 = [q1 – 0.5], s2 = [q2 + 0.5], as well as s1 = [q1 + 0.5], s2 = [q2 – 0.5].  

Balinski and Young [1982] proved that Webster’s method is the only 
method which is pairwise consistent with the standard apportionment for two 
agents. 

3. Weakly (unrounded) degressive proportionality 

Unrounded degressive proportionality (UDP) is the middle solution be-
tween equity and proportionality. Large agents get less as a result of the UDP 
allocation, whereas small agents get more. The extreme cases of the UDP are 
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equal apportionment and proportional apportionment. Let us consider the al-
location Af of the form 
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where ++ → RRf :  is a given function. The allocation Af  is said to satisfy the 
unrounded degressive proportionality (UDP), if the following conditions are 
satisfied 

 pi > pj   implies   qi ≥ qj (3) 
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The apportionment resulting from the function Af  will be called the UDP 
apportionment. As can be easily shown [Dniestrzański 2014b], given the dif-
ferentiable function f, the allocation Af is UDP if and only if 
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xdf  we obtain the equal apportionment, and if  

x
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=  we obtain the proportional apportionment.  

Example 2. Following Example 1, let: H = 20, p = (1, 2, 5), rounding up 
and ( )f x x= . Given the allocation function Af, we obtain the apportion-
ment Af (p, H) = Af ((1, 2, 5), 20) = (5, 6, 9). 

Examples 1 and 2 (Table 1) yielded significantly different results. The 
differences are mostly remarkable in the case of the smallest and the largest 
agent, as a consequence of adjusting the entitlements, that actually happens 
due to the function xxf =)( .  
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Table 1. Comparison of apportionments delivered in Examples 1 and 2 

Values of agents p1 = 1  p2 = 2  p3 = 5  

Webster’s allocation (example 1) s1 = 3  s2 = 5 s3 = 12 H = 20 

UDP allocation xxf =)(  (example 2) s1 = 5  s2 = 6  s3 = 9 H = 20 

Source: own elaboration. 

We shall now analyze whether the five properties described in Section 2, 
yielding a full axiomatization of divisor methods, are satisfied in cases of 
UDP allocations, i.e. those satisfying the conditions (2)-(5). 

Unbiasedness – this condition is obviously satisfied. 
Pairwise consistency. This condition is satisfied by allocation Af, given 

any function f, even the conditions (3) and (4) do not have to be satisfied. This 
is a consequence of the fact that UDP with function  f  is equivalent to a divisor 
method after transforming the vector of entitlements p into the vector of enti-
tlements  pf = (f(p1), f(p2), …, f(pn)). 

Homogeneity – this condition is obviously satisfied. 
Exactness. This condition is not satisfied. For example, given f = const, 

H = 20, p = (1, 2, 3) and upwards rounding, we obtain Af ((1, 2), 6) = (3, 3) ≠ 
(1, 2) ⋅ 2. 

Weak monotonicity. This condition is satisfied by definition of the UDP 
– the equation (4) must hold. 

All five axioms characterizing divisor methods are very natural, and 
the requirement that proportional allocations should satisfy them seems obvi-
ous. It turns out that as many as four are satisfied also in the case of weakly 
degressive proportionality. The only axiom that is not indispensable for the 
UDP, and even undesirable, is consistency. The failure to meet this axiom is 
not unusual because it always compels the strictly proportional apportionment 
whenever possible. However, knowing that the remaining four  axioms are 
satisfied, one may attempt to look for one or more axioms which will charac-
terize the weakly degressive proportionality along with the current four. This 
in turn could enable a more in-depth analysis of the UDP. 
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In practical applications, the so-called boundary conditions are imposed 
on weakly degressive proportional allocations (as well as on proportional al-
locations). They are typically in the form of specifying the minimum and 
maximum number of the good that can be allocated to agents. For example, 
in the case of the European Parliament (in compliance with the Treaty of Lis-
bon, the composition of the European Parliament must be degressively pro-
portional), the numbers of seats apportioned to the member states must belong 
to the set {6, 7, …, 96}. The boundary conditions can distort the original idea 
as much as possible. However, if they are “reasonably” associated with the 
remaining components of allocations (the size of the good to be distributed, 
the number and entitlements of the agents), one may also in this case analyze 
the allocation problem from the viewpoint of axioms. The analyses of bound-
ary conditions influencing degressively proportional allocations are for ex-
ample in papers by Łyko [2013], and Dniestrzański, Łyko [2014]. Dnie-
strzański [2014a] puts forward an approach to investigate the level of degres-
sion in a given allocation (or a method). 

4. Conclusion 

Degressive proportionality represents a key element of the theory of fair 
distribution. It is an alternative to proportional allocation, especially when 
entitlements of agents vary significantly. In contrast with proportional and 
equal allocations, most often there are a lot of solutions satisfying the condi-
tions of degressive proportionality. In practical applications, the selection of 
one solution can be a serious problem. This is exemplified by the case of the 
European Parliament, where despite legally binding stipulations consecutive 
parliamentary terms have failed to reach the apportionment of the seats 
among the member states that fully satisfies the idea of degressive propor-
tionality. The analysis of this allocation method at the level of axioms may 
contribute to its better understanding, and as a consequence, to enable its im-
plementation. This paper investigated the differences between degressive pro-
portionality (in its weak variant, as the UDP) and the divisor methods under-
lying proportionate allocations. 
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