Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2015 | 2 (48) | 89-99

Article title

Identyfikacja potencjalnych nabywców polis ubezpieczeniowych w warunkach mocno niezbilansowanej próby uczącej

Authors

Content

Title variants

EN
Identification of potential purchasers of the insurance policies under hard unbalanced training set

Languages of publication

PL

Abstracts

EN
Having given the data set with executed transactions and customer demographic features one can use marketing scoring to support sales campaign. The discrimination methods used in the scoring often face the problem of imbalance classes and irrelevant variables. In this paper, we analyze the insurance market, where the scoring is performed with a use of the weighted k nearest neighbors and multivariate filters. The feature selection significantly contributed to increasing the number of correctly identified potential purchasers of the insurance policy.

Contributors

author

References

  • Dudani S.A., 1976, The distance-weighted k-nearest-neighbor rule, IEEE Transactions on Systems, Man and Cybernetics, 6(4), s. 325-327.
  • Elkan C., 2001, Magical thinking in data mining: Lessons from CoIL Challenge 2000, Proceedings of the 7th International Conference on Knowledge Discovery and Data Mining (KDD’01), s. 426-431.
  • Enas G.G., Choi S.C., 1986, Choice of the smoothing parameter and efficiency of k-nearest neighbor classification, Computer and Mathematics with Applications, 12A(2), s. 235-244.
  • Galar M., Fernandez A., Barrenechea E., Herrera F., 2013, EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling, Pattern Recognition, 46(12), s. 3460-3471.
  • Gatnar E., 2005, Dobór zmiennych do zagregowanych modeli dyskryminacyjnych, Prace Naukowe Akademii Ekonomicznej we Wrocławiu, nr 1076, Taksonomia 12, Klasyfikacja i analiza danych – teoria i zastosowania, s. 79-86.
  • Ghiselli E.E., 1964, Theory of Psychological Measurement, McGraw-Hill, New York.
  • Gou J., Du L., Zhang Y., Xiong T., 2012, A new distance-weighted k-nearest neighbour classifier, Journal of Information and Computational Science, vol. 9, no. 6, s. 1429-1436.
  • Guyon I., Gunn S., Nikravesh M., Zadeh L., 2006, Feature Extraction: Foundations and Applications, Springer, New York.
  • Hall M., 2000, Correlation-based feature selection for discrete and numeric class machine learning, Proceedings of the 17th International Conference on Machine Learning, Morgan Kaufmann, San Francisco.
  • Hastie T., Tibshirani R., Friedman J., 2009, The Elements of Statistical Learning: Data Mining, Inferance, and Prediction, 2nd edition, Springer, New York.
  • Hellwig Z., 1969, Problem optymalnego wyboru predykant, Przegląd Statystyczny, nr 3-4.
  • Jensen D. D., Cohen P. R., 2000, Multiple comparisons in induction algorithms, Machine Learning, 38(3), s. 309-338.
  • Kubus M., 2015, Feature selection and the chessboard problem, XXXIII Międzynarodowa Konferencja Wielowymiarowa Analiza Statystyczna, Łódź (w druku).
  • Kwak N., Choi C.H., 2002, Input feature selection by mutual information based on Parzen window, IEEE Transactions. Pattern Analysis and Machine Intelligence, vol. 24, no. 12, s. 1667-1671.
  • Misztal M., 2014, Wybrane metody oceny jakości klasyfikatorów – przegląd i przykłady zastosowań, Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, nr 328, Taksonomia 23, Klasyfikacja i analiza danych – teoria i zastosowania, s. 156-166.
  • Reunanen J., 2006, Search Strategies, [w:] Guyon I., Gunn S., Nikravesh M., Zadeh L. (red.), Feature Extraction: Foundations and Applications, Springer, New York.
  • Tsamardinos I., Aliferis C.F., 2003, Towards principled feature selection: relevancy, filters and wrappers, Proceedings of the Workshop on Artificial Intelligence and Statistics.
  • Walesiak M., 1987, Zmodyfikowane kryterium doboru zmiennych objaśniających do liniowego modelu ekonometrycznego, Przegląd Statystyczny, 1, s. 37-43.
  • van der Putten, P., van Someren, M., 2000, CoIL challenge 2000: The insurance company case, Technical Report 2000-2009, Leiden Institute of Advanced Computer Science, Universiteit van Leiden, http://www.liacs.nl/~putten/library/cc2000.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-b384203e-41ce-4cc5-ab1e-aca5acbee1b9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.