Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2015 | 24 | 4 Mereology and Beyond | 409-427

Article title

Mereology then and now

Title variants

Languages of publication

EN

Abstracts

EN
This paper offers a critical reconstruction of the motivations that led to the development of mereology as we know it today, along with a brief description of some questions that define current research in the field.

Year

Volume

24

Pages

409-427

Physical description

Dates

published
2015-12-13

Contributors

  • Department of Logic, Nicolaus Copernicus University in Toruń, Poland
  • Department of Philosophy, Columbia University, New York, USA

References

  • Aczel, P., Non-Well-Founded Sets, CSLI Lecture Notes, Stanford, 1988.
  • Armstrong, D.M., “In defence of structural universals”, Australasian Journal of Philosophy, 64, 1 (1986): 85–88. DOI: 10.1080/00048408612342261
  • Bennett, B., and I. Düntsch, “Axioms, algebras and topology”, pages 99–159 in Handbook of Spatial Logics, M. Aiello, I. Pratt-Hartmann, and J. Van Benthem (eds.), Springer-Verlag, Berlin, 2007. DOI: 10.1007/978-1-4020-5587-4_3
  • Bennett, K., “Having a part twice over”, Australasian Journal of Philosophy, 91, 1 (2013): 83–103. DOI: 10.1080/00048402.2011.637936
  • Black, M., “The identity of indiscernibles”, Mind, 61, 242 (1952): 153–164. DOI: 10.1093/mind/LXI.242.153
  • Caplan, B., C. Tillman, and P. Reeder, “Parts of singletons”, Journal of Philosophy, 107, 10 (2010): 501–533. DOI: 10.5840/jphil20101071036
  • Casari, E., “On Husserl’s theory of wholes and parts”, History and Philosophy of Logic, 21, 1 (2000): 1–43. DOI:10.1080/01445340050044628
  • Casati, R. and A.C. Varzi, Parts and Places. The Structures of Spatial Representation, MIT Press, Cambridge (MA), 1999.
  • Clay, R.E., “Relation of Leśniewski’s mereology to Boolean algebra”, Journal of Symbolic Logic, 39, 4 (1974): 638–648. DOI: 10.2307/2272847
  • Cotnoir, A.J., “Strange parts: The metaphysics of non-classical mereologies”, Philosophy Compass, 8, 9 (2013): 834–845. DOI: 10.1111/phc3.12061
  • Cotnoir, A.J., “Beyond atomism”, Thought, 2, 1 (2013): 67–72. DOI: 10.1002/tht3.64
  • Cotnoir, A.J., “Composition as identity. Framing the debate”, pages 3–23 in Composition as identity, A.J. Cotnoir and D. Baxter (eds.), Oxford University Press, Oxford, 2014. DOI: 10.1093/acprof:oso/9780199669615.003.0001
  • Cotnoir, A.J. and A. Bacon, “Non-wellfounded mereology”, Review of Symbolic Logic, 5, 2 (2012): 187–204. DOI: 10.1017/S1755020311000293
  • de Laguna, T., “Point, line, and surface, as sets of solids”, Journal of Philosophy, 19, 17 (1922): 449–461. DOI: 10.2307/2939504
  • Donnelly, M., “Using mereological principles to support metaphysics”, Philosophical Quarterly, 61, 243 (2011): 225–246. DOI: 10.1111/j.1467-9213.2010.683.x
  • Fine, K., “Part-whole”, pages 463–485 in The Cambridge Companion to Husserl, B. Smith and D.W. Smith (eds.), Cambridge University Press, Cambridge, 1995. DOI: 10.1017/CCOL0521430232.011
  • Forrest, P., “Nonclassical mereology and its application to sets”, Notre Dame Journal of Formal Logic, 43, 2 (2002): 79–94. DOI:10.1305/ndjfl/1071509430
  • French, S., and D. Krause Identity in Physics: A Historical, Philosophical, and Formal Analysis, Oxford University Press, Oxford, 2006. DOI: 10.1093/0199278245.001.0001
  • Gerla, G., “Pointless geometries”, pages 1015–1031 in Handbook of Incidence Geometry, F. Buekenhout (ed.), Elsevier, Amsterdam, 1995. DOI: 10.1016/B978-044488355-1/50020-7
  • Goodman, N., “A world of individuals”, pages 13–31 in J.M. Bochenski, A. Church, and N. Goodman, The Problem of Universals. A Symposium, University of Notre Dame Press, Notre Dame, 1956.
  • Gruszczyński, R., and A. Pietruszczak, “Full development of Tarski’s geometry of solids”, The Bulletin of Symbolic Logic, 14, 4 (2008): 481–540. DOI: 10.2178/bsl/1231081462
  • Gruszczyński, R., and A. Pietruszczak, “How to define a mereological (collective) set”, Logic and Logical Philosophy, 19, 4 (2010): 309–328. DOI: 10.12775/LLP.2010.011
  • Gruszczyński, R., and A. Pietruszczak, “The relations of supremum and mereological sum in partially ordered sets”, pages 123–140 in Mereology and the Sciences, C. Calosi and P. Graziani (eds.), Springer-Verlag, Berlin, 2014. DOI: 10.1007/978-3-319-05356-1_6
  • Grzegorczyk, A., “Axiomatizability of geometry without points”, Synthese, 12, 2–3 (1960): 228–235. DOI: 10.1007/BF00485101
  • Hellman, G., and S. Shapiro, “The classical continuum without points”, Review of Symbolic Logic, 6, 3 (2013): 488–512. DOI: 10.1017/S1755020313000075
  • Hovda, P., “What is classical mereology?”, Journal of Philosophical Logic, 38, 1 (2009), 55–82. DOI: 10.1007/s10992-008-9092-4
  • Husserl, E., Logische Untersuchungen. Zweiter Band. Untersuchungen zur Phänomenologie und Theorie der Erkenntnis, Niemeyer, Halle, 1900/1901; 2nd ed. 1913; cited in the Eng. trans. by J.N. Findlay: Logical investigations. Volume Two, Routledge & Kegan Paul, London, 1970.
  • Leonard, H.S., and N. Goodman, “The calculus of individuals and its uses”, Journal of Symbolic Logic, 5, 2 (1940): 45–55. DOI: 10.2307/2266169
  • Leśniewski, S., “Czy klasa klas, nie podporządkowanych sobie, jest podporządkowana sobie?”, Przegląd Filozoficzny, 17: 63–75. Eng. trans. By S.J. Surma and J. Wójcik: “Is the class of classes not subordinated to themselves, subordinated to itself?”, pages 115–128 in [32].
  • Leśniewski, S., Podstawy ogólnej teoryi mnogości. I, Prace Polskiego Koła Naukowego w Moskwie, Sekcja matematyczno-przyrodnicza, Moscow, 1916. Eng. trans. by D.I. Barnett: “Foundations of the general theory of sets. I”, pages 129–173 in [32].
  • Leśniewski, S., “O podstawach matematyki”, Przegląd Filozoficzny, 30 (1927): 164–206; 31 (1928): 261–291; 32 (1929): 60–101; 33 (1930): 77–105; 34 (1931): 142–170. Cited in the Eng. trans. by D.I. Barnett: “On the foundations of mathematics”, pages 174–382 in [32].
  • Leśniewski, S., Collected Works. Volume I, S.J. Surma, J.T. Srzednicki, D.I. Barrnett, and V.F. Rickey (eds.), Kluwer Academic Publishers, Dordrecht, 1991.
  • Lewis, D.K., “Against structural universals”, Australasian Journal of Philosophy, 64, 1 (1986): 25–46. DOI: 10.1080/00048408612342211
  • Lewis, D.K., Parts of Classes, Blackwell, Oxford, 1991.
  • Maffezioli, P., “Analytic rules for mereology”, Studia Logica. DOI: 10.1007/s11225-015-9623-2
  • Mormann, T., “Structural universals as structural parts: Toward a general theory of parthood and composition”, Axiomathes, 20, 2–3 (2010): 209–227. DOI: 10.1007/s10516-010-9105-0
  • Null, G., “A first-order axiom system for non-universal part-whole and foundational relations”, pages 463–484 in Essays in memory of Aron Gurwitsch, L. Embree (ed.), UniversityPress of America, Lanham (MD), 1983.
  • Pietruszczak, A., Metamereologia, Wydawnictwo UMK, Toruń, 2000.
  • Pietruszczak, A., “Paradoks Russella a początki mereologii”, Ruch Filozoficzny, 59, 1 (2002): 123–129.
  • Pietruszczak, A., “Pieces of mereology”, Logic and Logical Philosophy, 14, 2 (2005): 211–234. DOI: 10.12775/LLP.2005.014
  • Pietruszczak, A., Podstawy teorii części, Wydawnictwo Naukowe UMK, Toruń, 2013.
  • Pietruszczak, A., “A general concept of being a part of a whole”, Notre Dame Journal of Formal Logic, 55, 3 (2014): 359–381. DOI: 10.1215/00294527-2688069
  • Polkowski, L., Approximate Reasoning by Parts. An Introduction to Rough Mereology, Springer-Verlag, Berlin, 2011. DOI: 10.1007/978-3-642-22279-5
  • Pontow, C., and R. Schubert, “A mathematical analysis of theories of parthood”, Data & Knowledge Engineering, 59, 1 (2006): 107–138. DOI: 10.1016/j.datak.2005.07.010
  • Priest, G., “A site for sorites”, pages 9–24 in Liars and Heaps: New Essays on Paradox, J.C. Beall (ed.), Oxford University Press, Oxford, 2003.
  • Quine, W.V.O., “On what there is”, Review of Metaphysics, 2, 5 (1948): 21–38.
  • Quine, W.V.O., “Speaking of objects”, Proceedings and Addresses of the American Philosophical Association, 31 (1957/1958): 5–22. DOI:10.2307/3129242
  • Roeper, P., “Region-based topology”, Journal of Philosophical Logic, 23, 3 (1997): 251–309. DOI: 10.1023/A:1017904631349
  • Shiver, A., “How do you say ‘everything is ultimately composed of atoms’?”, Philosophical Studies, 172, 3 (2015): 607–614. DOI: 10.1007/s11098-014-0321-0
  • Simons, P.M., “The formalizationof Husserl’s theory of parts and wholes”, pages 481–552 in Parts and Moments. Studies in Logic and Formal Ontology, B. Smith (ed.), Philosophia, Munich, 1982. DOI: 10.1007/978-94-015-8094-6_4
  • Simons, P.M., Parts. A study in Ontology, Clarendon Press, Oxford, 1987. DOI: 10.1093/acprof:oso/9780199241460.001.0001
  • Sinisi, V.F., “Leśniewski’s analysis of Russell’s antinomy”, Notre Dame Journal of Formal Logic, 17, 1 (1976): 19–34. DOI: 10.1305/ndjfl/1093887422
  • Sobociński, B., “L’analyse de l’antinomie russellienne par Leśniewski”, Methodos, 1 (1949): 94–107, 220–228, 308–316; and 2 (1950): 237–257.
  • Tarski, A., “Les fondements de la géométrie des corps”, pages 29–33 in Księga Pamiątkowa Pierwszego Polskiego Zjazdu Matematycznego, suppl. to Annales de la Société Polonaise de Mathématique, Vol. 7, 1929. Eng. trans. by J.H. Woodger, “Foundations of the geometry of solids”, pages 24–29 in A. Tarski, Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Oxford, Clarendon Press, 1956.
  • Tarski, A., “Zur Grundlegung der Booleschen Algebra, I”, Fundamenta Mathematicae 24, 1 (1935): 177–198. Engl. trans. “On the foundations of Boolean algebra”, pages 320–341 in A. Tarski, Logic, Semantics, Metamathematics. Papers from 1923 to 1935, Oxford, Clarendon Press, 1956. http://eudml.org/doc/212745 Mereology then and now 427
  • Tsai, H., “More on decidability of mereological theories”, Logic and Logical Philosophy, 20, 3 (2011): 251–265. DOI: 10.12775/LLP.2011.015
  • Tsai, H., “More on decidability of mereological theories”, Logic and Logical Philosophy, 20, 3 (2011): 251–265. DOI: 10.12775/LLP.2011.015
  • Tsai, H., “Decidability of general extensional mereology”, Studia Logica, 101, 3 (2013): 619–636. DOI: 10.1007/s11225-012-9400-4
  • Tsai, H., “A comprehensive picture of the decidability of mereological theories”, Studia Logica, Vol. 101, No. 5, pp. 987–1012, 2013. DOI:10.1007/s11225-012-9405-z
  • Tsai, H. and A.C. Varzi, “Atoms, gunk, and the limits of ‘composition’”, Erkenntnis. DOI: 10.1007/s10670-015-9736-z
  • Urbaniak, R., Leśniewski’s Systems of Logic and Foundations of Mathematics, Springer-Verlag, Berlin, 2013. DOI: 10.1007/978-3-319-00482-2
  • Vakarelov, D., “Region-based theory of space: Algebras of regions, representation theory, and logics”, pages 267–348 in Mathematical Problems from Applied Logic II, D. Gabbay, M. Zakharyaschev, and S. Goncharov (eds.), Springer-Verlag, New York, 2007. DOI: 10.1007/978-0-387-69245-6_6
  • van Inwagen, P., Material Beings, Cornell University Press, Ithaca (NY), 1990.
  • Varzi, A.C., “Spatial reasoning and ontology: Parts, wholes and locations”, pages 945–1038 in Handbook of Spatial Logics, M. Aiello, I. Pratt-Hartmann, and J. Van Benthem (eds.), Springer-Verlag, Berlin, 2007. DOI: 10.1007/978-1-4020-5587-4_15
  • Varzi, A.C., “On the boundary between material and formal ontology”, pages 3–8 in Interdisciplinary Ontology, Vol. 3, “Proceedings of the Third Interdisciplinary Ontology Meeting”, B. Smith, R. Mizoguchi, and S. Nakagawa (eds.), Keio University Press, Tokyo, 2010.
  • Varzi, A.C., “Mereology”, in Stanford Encyclopedia of Philosophy, E.N. Zalta (ed.), 2015. http://plato.stanford.edu/entries/mereology/
  • Whitehead, A.N., An Enquiry Concerning the Principles of Human Knowledge, Cambridge University Press, Cambridge, 1919.
  • Whitehead, A.N., The Concept of Nature, Cambridge University Press, Cambridge, 1920.
  • Whitehead, A.N., Process and Reality, MacMillan, New York, 1929.
  • Zadeh, L., “Fuzzy sets”, Information and Control, 8, 3 (1965): 338–353. DOI: 10.1016/S0019-9958(65)90241-X

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-b5fd8488-b057-4fe6-9b0e-661524850397
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.