Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2020 | 30 | 2 | 77-89

Article title

Satisfaction of the condition of order preservation: A simulation study

Content

Title variants

Languages of publication

EN

Abstracts

EN
We examine the satisfaction of the condition of order preservation (COP) concerning different levels of inconsistency for randomly generated multiplicative pairwise comparison matrices (MPCMs) of the order from 3 to 9, where a priority vector is derived both by the eigenvalue (eigenvector) method (EV) and the geometric mean (GM) method. Our results suggest that the GM method and the EV method preserve the COP almost identically, both for the less inconsistent matrices (with Saaty’s con-sistency index below 0.10), and the more inconsistent matrices (Saaty’s consistency index equal to or greater than 0.10). Further, we find that the frequency of the COP violations grows (almost linearly) with the increasing inconsistency of MPCMs measured by Koczkodaj’s inconsistency index and Saaty’s consistency index, respectively, and we provide graphs to illustrate these relationships

Year

Volume

30

Issue

2

Pages

77-89

Physical description

Contributors

  • School of Business Administration in Karvina, Silesian University in Opava Univerzitní náměstí 1934/3, 733 40 Karviná, Czech Republic
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland

References

  • AGUARON J., MORENO-JIMENEZ J.M., The geometric consistency index: Approximated threshold, Eur. J. Oper. Res., 2003, 147 (1), 137–145.
  • BANA E COSTA C.A., VANSNICK J., A critical analysis of the eigenvalue method used to derive priorities in AHP, Eur. J. Oper. Res., 2008, 187 (3), 1422–1428.
  • BARZILAI J., Consistency measures for pairwise comparison matrices, J. Multi-Crit. Dec. Anal., 7 (3), 1998, 123–132.
  • BOZÓKI S., RAPCSÁK T., On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices, J. Global Opt., 2008, 42 (2), 157–175.
  • BRUNELLI M., CANAL L., FEDRIZZI M., Inconsistency indices for pairwise comparison matrices: a numerical study, Ann. Oper. Res., 2013, 211 (1), 493–509.
  • BRUNELLI M., FEDRIZZI M., Axiomatic properties of inconsistency indices for pairwise comparisons, J. Oper. Res. Soc., 2015, 66 (1), 1–15.
  • BRUNELLI M., Studying a set of properties of inconsistency indices for pairwise comparisons, Ann. Oper. Res., 2017, 248 (1–2), 143–161.
  • BRUNELLI M., A survey of inconsistency indices for pairwise comparisons, Int. J. Gen. Syst., 2018, 47 (8), 751–771.
  • CAVALLO B., Functional relations and Spearman correlation between consistency indices, J. Oper. Res. Soc., 2020, 71 (2), 301–311.
  • CAVALLO B., D’APUZZO L., Preservation of preferences intensity of an inconsistent pairwise comparison matrix, Int. J. Appr. Reas., 2020, 116, 33–42.
  • CRAWFORD G., WILLIAMS C., A note on the analysis of subjective judgment matrices, J. Math. Psych., 1985, 29 (4), 387–405.
  • CRAWFORD G.B., The geometric mean procedure for estimating the scale of a judgement matrix, Math. Model., 1987, 9 (3), 327–334.
  • CSATÓ L., Characterization of an inconsistency ranking for pairwise comparison matrices, Ann. Oper. Res., 2018, 261 (1–2), 155–165.
  • CSATÓ L., PETRÓCZY D.G., Rank monotonicity and the eigenvector method, Manuscript, 2020, ArXiv: 1902.10790.
  • GOLDEN B., WANG Q., An alternate measure of consistency, [In:] B. Golden, E. Wasil, P.T. Harker (Eds.), The Analytic Hierarchy Process, Applications and Studies, Springer-Verlag, Berlin 1989, 68–81.
  • HERMAN M.W., KOCZKODAJ W.W., A Monte Carlo Study of Parwise Comparison, Inf. Proc. Lett., 1996, 57, 25–29.
  • ISHIZAKA A., LUSTI M., How to derive priorities in AHP: a comparative study, Central Eur. J. Oper. Res., 2006, 14 (4), 387–400.
  • KOCZKODAJ W.W., A new definition of consistency of pairwise comparisons, Math. Comp. Model., 1993, 18 (7), 79–84.
  • KULAKOWSKI K., Notes on Order Preservation and Consistency in AHP, Eur. J. Oper. Res., 2015, 245, 333–337.
  • KULAKOWSKI K., MAZUREK J., RAMÍK J., SOLTYS M., When is the condition of preservation met?, Eur. J. Oper. Res., 2019, 277, 248–254.
  • MAZUREK J., Some notes on the properties of inconsistency indices in pairwise comparisons, Oper. Res. Dec., 2018, 1, 27–42.
  • MAZUREK J., RAMÍK J., Some new properties of inconsistent pairwise comparison matrices, Int. J. Appr. Reas., 2019, 113, 119–132.
  • SAATY T.L., A scaling method for priorities in hierarchical structures, J. Math. Psych., 1977, 15 (3), 234–281.
  • SAATY T.L., Analytic Hierarchy Process, McGraw-Hill, New York 1980. https://data.mendeley.com/datasets/kskpwfcf9z/1

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-b7789482-a0bf-4d78-9b28-7fa8d7d816c7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.