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Abstract: We show how the absolute differences approach is particularly 12 
effective to interpret the Gini coefficient (G) when a distribution includes 13 
both positive and negative values. Either in erasing units having negative 14 
values, or in transforming negative values into zero, a significant variability 15 
fraction can be lost. When including negative values, instead of correcting G, 16 
to maintain it lower than 1, the standard G should be kept to compare the 17 
variability among different situations; a recent normalization, Gp, can be 18 
associated to G, to evaluate the variability percentage inside each situation. 19 

Keywords: absolute difference components, negative values, normalization 20 
of Gini based coefficients 21 

INTRODUCTION 22 

The Gini coefficient is normally used in presence of non negative values, so 23 
that, when the distribution at stake includes negative values, it is common practice 24 
either excluding units with negative values, or transforming negative values into 25 
zero, with the latter suggested by OECD [2014]. Many transferable variables can 26 
take on negative values in their distributions. When dealing with monetary 27 
variables, e.g., there could be several reasons for an income unit to have negative 28 
net income, at least in terms of a particular source. For example, when assessing 29 
income units and financial assets such as capital gains, negative values can be 30 
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observed. Negative values can also be seen dealing with self-employed workers’ 1 
incomes, if losses are greater than gains; the same money transfers are positive 2 
revenues - taking into consideration persons who receive them – and negative 3 
revenues – while considering the other persons. Another example is tax systems 4 
that admit negative income taxes, which can originate, for instance, from child 5 
allowances. 6 

The most frequently used single measure of income inequality is the Gini 7 
coefficient of concentration. However, when a distribution includes negative 8 
values, as Castellano [1937] observes, the Lorenz curve lays under the x-axis (here 9 
we suppose that the average of the variable is positive) and the Gini coefficient can 10 
assume values greater than one, as it is observed by Hagerbaumer [1977],  11 
Pyatt et al. [1980], Lambert and Yitzhaki [2013]. In eliminating the observations 12 
with negative values or in converting them into zero, this outcome is avoided. 13 

However, this approach may neglect a significant proportion of variability 14 
and, as a consequence, can lead to unreliable comparisons among distributions. 15 

In order to restrict the Gini coefficient to the range 0-1, Chen et al. [1982] 16 
modify the normalizing factor by adding a certain component. This component 17 
depends on the distribution of negative values and of such proportion of the 18 
smallest positive values, which are enough to compensate for the former. The 19 
authors’ proposition is in fact not a normalization but rather an ad hoc correction, 20 
as it depends on the particular form of the compensating area at stake (Chen et al.’s 21 
method was subsequently completed by Berrebi and Silber [1985], who provided a 22 
correct expression for the general case - when the fractional number of smallest 23 
positive units compensates for the sum of the negative ones). 24 

Chen et al.’s correction has the advantage of making the modified Gini 25 
coefficient decrease for any equalitarian redistribution. However, Chen et al.’s 26 
coefficient becomes less and less sensitive as the concentration increases. Raffinetti 27 
et al. [2015] provide several examples on this point and suggest a normalization 28 
that keeps into account the potential maximum Gini mean difference. The authors 29 
formulate certain conditions for the application of their normalization. 30 

In this paper we attempt to better understand the behaviour and the meaning 31 
of the Gini coefficient, of its modifications presented in the literature and its 32 
practical adaptations when negative values are observed. Here, we consider, 33 
together with the standard Gini coefficient, the coefficient Gp, introduced by 34 
Raffinetti et al., and the correction introduced by Chen et al. including Berrebi and 35 
Silber’s completion. The behaviours of these indexes are tested when compensative 36 
transfers occur between units with positive values and units with negative values 37 
of the variable, so that the negative values are transformed into zero, thanks to 38 
transfers from units with positive values. The paper is organized as follows.  39 
The next section examines the components of the standard Gini coefficient when it 40 
is calculated either by including units that have negative values or excluding these 41 
units or turning their values into zero. The section which follows, is an overview 42 
of several adjustments proposed in the literature on the calculation of the Gini 43 
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coefficient. In particular, the section provides a deepening on the Chen et al. 1 
correction and shows what Raffinetti et al.’s normalization means and how it 2 
should be used. The section entitled “Compensative redistributions” considers  3 
the behaviour of the indexes previously introduced under the  compensative 4 
equalitarian redistribution. The section which comes next, provides a numerical 5 
example, which illustrates the theoretical behaviours described in the previous 6 
sections; this section shows also how the standard Gini coefficient should be 7 
interpreted, with the information provided by Gp. The last section offers  8 
a conclusion. 9 

THE GINI COEFFICIENT IN THE PRESENCE OF NEGATIVE 10 

VALUES 11 

Let’s consider a variable that takes on negative values, units arranged in a 12 
non-decreasing order  1 2 1 2, ,...., , , ,....,N N N Mx x x x x x  . 13 

We suppose that the first N units, i = 1, 2,….N,  have negative values, while 14 
the remaining units, i = N + 1, N + 2, …..M) are non-negative. We assume that the 15 

sum of the non-negative values, 
1

M

i ai N
x T

 
 , is greater than the absolute sum 16 

of the negative values, 
1

N

i ni
x T


 , i.e., 

1
0

M

i a ni
x T T


   .  17 

If we split the whole distribution into two groups, the former containing the 18 
negative values and the latter the non-negative values, we can write the sum  19 
of the absolute differences as: 20 

1 1

M M

i ji j
S x x

 
    2n a n aS NT M N T S        . (1) 21 

In (1), 
1 1

N N

n i ji j
S x x

 
    is the within group component for the units 22 

with negative values, 
1 1

M M

a i ji N j N
S x x

   
    is the within group component 23 

for the units with non-negative values and  a nNT M N T 24 

1 1

N M

i ji j N
x x

  
    is the between-group component, which in S appears twice 25 

(see appendix for further details). 26 
If we apply the well-known results concerning the sum of absolute 27 

differences (see [Gini 1930; Castellano, 1937]), under the condition that the total 28 
amount both of absolute negative values, Tn, and of positive values, Ta, remain 29 

constant, we can see that    max 2 1n nS N T  ;    max 2 1a aS M N T   . 30 

Therefore, it follows that  31 

       max max 2 maxn a n aS S NT M N T S         32 

=      2 1 2 2 1n a n aN T NT M N T M N T           33 
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=   2 1 a nM T T  ,  (2) 1 

which illustrates what Raffinetti et al. [2015] report in their expression (5).  2 
It follows that, when the distribution of the variable at stake includes 3 

negative values, the Gini coefficient 4 

 
  2 1 a n

S
G

M T T


 
 lies in the interval 0 a n

a n

T T
G

T T


 


. (3) 5 

The upper bound holds if the total positive amount is possessed by one unit, 6 
the total loss is suffered by another single unit, and xi’s are equal to 0  7 
for the remaining (M - 2) units. 8 

We stress that in (3) for the maximum to remain unchanged, it is enough that 9 

the ratio  n aT T  remains constant. 10 

When the number of units is large enough, G is approximated by G = Δ/2μ, 11 
with Δ = S/M2 and μ = (Ta - Tn)/M. Analogous simplifications apply to other 12 
indexes considered in this paper, whenever deviations are substituted by ratios 13 
of averages. 14 

As mentioned above, the majority of researchers either erase the units with 15 
negative values or convert the negative values into zero. These procedures should 16 
be adopted when both the sum of negative values and the number of units with 17 
negative values and are negligible. 18 

The Gini coefficient erasing negative values 19 

If the negative values are erased, the Gini coefficient becomes 20 

 
 2 1

a
a

a

S
G

M N T


 
. (4) 21 

Ga excludes from its numerator both the variability within the units with negative 22 
values, Sn, and the variability between these units and those with non-negative 23 

values,  a nNT M N T    . 24 

The Gini coefficient while turning negative values into zeros 25 

When the negative values are turned into zero, the Gini coefficient becomes 26 

 
 

2

2 1

a a
za

a

NT S
G

M T





. (5) 27 

In expression (5), the component 2NTa expresses the differences between 28 
the first N units (i = 1, 2,…, N), which are set as equal to zero and the units that 29 
maintain their original non-negative values (i = N + 1, N + 2,…, M) (see appendix 30 
for further details). 31 

Gza excludes Sn and part of the between-group variability, i.e.,   nM N T . 32 
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If we rewrite the denominator of (5) as    2 1 2 1 2a a aM T M N T NT      1 

and then compare Gza with Ga, we see that both the numerator and the denominator 2 
of the former differ from the numerator and the denominator of the latter  3 
by the same quantity, 2 aNT . Then, as S a≤ 2(M – N - 1)Ta, we are able to conclude 4 

that Ga ≤ Gza. 5 
It should be noted that Gza ≤ G, as the denominator of (3) is smaller than that 6 

of Gza, while the numerator of G is greater than that of Gza. Then, a fortiori, 7 
Ga ≤ G. 8 

NEGATIVE VALUES AND ADJUSTMENTS IN THE CALCULATION 9 

OF THE GINI COEFFICIENT 10 

Chen et al. [1982] (henceforth CTR) suggest a correction that, on the one 11 
hand, allows preservation of the whole variability in S and, on the other hand, 12 
keeps the modified Gini coefficient within the range [0; 1]. Another treatment is 13 
proposed by Raffinetti et al. [2015]. Basing on (3), they suggest dividing S  14 

(as calculated with formula (1)) by   2 1 a nM T T  , i.e., dividing G by its upper 15 

bound    a n a nT T T T  . 16 

The CTR correction 17 

The authors’ correction is obtained by “freezing” the ratio between the 18 
average of the net available amount, and the average of absolute differences, 19 
calculated within a particular subset of the distribution: the subset which includes 20 
all the negative values and the smallest positive values. Even if CTR and BS start 21 
from absolute differences, the authors’ methodology is eventually conducted and 22 
interpreted in terms of areas bounded by the Lorenz curve: consequently, according 23 
to the authors’ approach, what is “frozen” is the area which lies below the x-axis.  24 
The CTR correction was completed by Berrebi and Silber [1985] (henceforth BS). 25 

Here, we shall consider the CTR-BS correction entirely under the approach 26 
of absolute differences, as do Raffinetti et al. [2015]. 27 

In order to understand the rationale of the formula, we introduce some 28 
further pieces of notation. Having ordered the units in non-decreasing order with 29 

respect to the values of the variable, we suppose that 
1

0
K

ii
x


 , and that 30 

1

1
0

K

ii
x




 . Indeed, as BS observe, the sum of negative values is not necessarily 31 

compensated by an exact (integer) number of non-negative values; we can write 32 

that 11
0

K

i Ki
x x 
   and   1 2

1
M

K i a ni K
x x T T   

    , with 33 

11

K

i Ki
x x 

   (or 11

K

i Ki
x x 

  ). 34 

We can now represent the distribution of the variable as  35 
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    1 2 1 2 1 1 21 2
, ,...., , , ,...., , , , ....,N N N K K K K Mx x x x x x x x x x    

 
 

 (6) 1 

In (6), xi, i = 1, 2,…,N, are the units with a negative value of the variable 2 
and, for the remaining units,  i = N + 1, 2,…,M, xi ≥ 0. In (6), xK+1 is split into two 3 
sub-units: (xK+1)1 with weight η and (xK+1)2 with weight (1   η), respectively, 4 

η ≤ 1. It follows that   5 

    1 1 11 1 1
2 2 2 1

M K K

K i K i K ii i i
x x x x x x     

         6 

 +     1 12 2
2 2 1

M M

i K i Ki K i K
x x x x     
     ; 7 

(xK+1)1 will be regarded as belonging to the “lower” set in (6), and (xK+1)2 as 8 
belonging to the “upper” set of (6).  9 

Having defined  10 

 
 0 11 1 1

2
K K K

i j K ii j i
S x x x x   

     
, 

(7) 
11 

which is the sum of absolute differences within the subset 12 

 1 2 1 2 1 1
, ,...., , , ,...., ,N N N K Kx x x x x x x  

 
 

, and referring to Raffinetti et al. [2015], 13 

formula 3 and the proof reported below the formula, the CTR-BS Gini coefficient 14 
can be written as: 15 

 
  0 2 1

C S
a n

S
G

S M T T
 

  
. (8) 16 

As the appendix shows (formulae A6 A11), an alternative decomposition 17 
for S is  18 

   0 2 a n uS S K T T S     . (9) 19 

In (9) 20 

   12 2 2
2 1

M M M

u i j i Ki K j K i K
S x x x x      

        (10) 21 

is the sum of absolute differences among units in the subset  1 22
, ....,K K Mx x x 

 
 

; 22 

  a nK T T   is the sum of absolute differences between these units in subset 23 

 1 2 1 2 1 1
, ,...., , , ,...., ,N N N K Kx x x x x x x  

 
 

 and those in subset  1 22
, ....,K K Mx x x 

 
 

 24 

If we focus just on Su, by applying the usual results, Su yields its maximum 25 

when  M a nx T T   and the remaining xi (i=K+1, xK+2,…xM-1) are zero; if this is the 26 

case, 27 

        max 2 2 2 1u a n a nS M K T T T T         (11) 28 

and consequently  29 

     2 maxa n uK T T S     2 1 a nM T T   . (12) 30 

Therefore, as   2 a n uK T T S   ≤   2 1 a nM T T  , C SG   cannot be 31 

greater than 1, as we have assumed that the net amount of the variable is positive, 32 
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0 ≤ C SG   
≤ 1. Obviously, C SG   is zero if all xi (i = 1, 2, …., M) are equal, in which 1 

case all the three components in (9) are zero. 2 
We can observe that the CTR-BS correction does not refer to a theoretical 3 

extreme situation: it adds to the denominator a quantity, S0, which is present in the 4 
numerator: consequently it is an ad hoc procedure. Moreover, even if C SG   is 5 

a direct function of S0, Raffinetti et al. [2015] observe that the more Su approaches 6 

 max uS , the less sensitive C SG   is to what exists inside this set of units. 7 

Reconsidering the CTR correction 8 

We will now add several further considerations and introduce a revision 9 
of   the CTR approach. Having accepted that the subset 10 

 1 2 1 2 1 1
, ,...., , , ,...., ,N N N K Kx x x x x x x  

 
   is kept constant, for a given net amount 11 

 a nT T  the maximum S is generated by the set 12 

      1 2 1 2 1 1 2
, ,...., , , ,...., , , 0 ,0....,N N N K K a nx x x x x x x T T  

  
. (13) 13 

In the appendix, formula (A20) shows that the overall sum of absolute 14 
differences for the elements in set (13) is 15 

   0* 2 1 4( 1 )a n nS S M T T M K T        . (14) 16 

In (14), the component 4( 1 ) nM K T    is the so-called transvariation term (see 17 

Dagum’s terminology, 1997): it arises because the two subsets 18 

 1 2 1 2 1 1
, ,...., , , ,...., ,N N N K Kx x x x x x x  

 
 

 and    
2

0 ,0...., a nT T  
 (15) 19 

now overlap, as, within the first subset, at least one xi is greater than zero.  20 
So, if we normalize by the maximum S (maximum - keeping the lower 21 

subset constant, as in (13)) we yield 22 

 
  

  
0*

0

2

2 1 4( 1 )

a n u
C S

a n n

S K T T S
G

S M T T M K T






   


      
. (16) 23 

We observe that if, instead of calculating the absolute differences  24 

1 1

M i

i ji j
x x

 
  , among the elements of the set (13), we calculate the simple 25 

differences  1 1

M i

i ji j
x x

 
  , (see [Lambert 2001], Ch. 2), we yield 26 

  0 2 1 a nS M T T   , which is the correction adopted by CTR. Note that S0 27 

would coincide with S*; only if i jx x , for all i > j (i = 1, 2, …, M). This 28 

condition is not fulfilled in (13), then, being S0 < S*, we have that 
*
C S C SG G  . 29 

30 
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The Raffinetti, Siletti and Vernizzi normalization 1 

If we normalize G, taking into account its upper bound (as in (3)), we yield  2 

 a n
p

a n

T T
G G

T T





, (17) 3 

Gp is the index suggested by Raffinetti et al. [2015]: the maximum for Gp is 1. 4 

COMPENSATIVE REDISTRIBUTIONS 5 

Any equitable transfer lowers the standard Gini coefficient, as defined by 6 
expression (3). If we consider a redistribution that compensates negative values 7 
into non-negative values, by subtracting the overall amount Tn from units having 8 
positive values, after the compensation, all the indexes, introduced above, coincide 9 
with the standard Gini coefficient. However, even if such a redistribution is 10 
performed by equitable transfers, after this redistribution, the Gini coefficient may 11 

be greater than Ga, Gza,, 
*
C SG  , and Gp,, calculated for the distribution before these 12 

transfers . The only exception is C SG  .  13 

As an example, let’s consider an equalitarian compensation, achieved  14 
at the expense of the units with the smallest positive values. This compensation 15 
acts inside the subset  1 2 1 2 1 1

, ,...., , , ,...., ,N N N K Kx x x x x x x  
 
 

 and transforms all the 16 

xi’s within the subset into zeros. Notice that both before and after the compensa-17 

tion, 11
0

K

i Ki
x x 
  . The subset  1 22

, ....,K K Mx x x 
 
 

 remains unchanged. We 18 

label this redistribution “minimal compensation”.   19 
After such a redistribution, all the Gini indexes introduced in the previous 20 

sections (Ga, Gza, C SG  , 
*
C SG  ,  and Gp) can be reduced to the expression1 21 

 
  

  

2

2 1

a n u

a n

K T T S
G

M T T

  


 
. (18) 22 

Needless to say, for M → ∞, when dividing the numerator and the 23 
denominator by M2, the final result is practically the same if we leave (18) 24 
unchanged. 25 

For what concerns the behaviour of Gza, having labelled Sc the sum 26 
of absolute differences within the subset  1 2 1 1

, ,...., ,N N K Kx x x x  
 
 

 and using  27 

the decomposition (see appendix, formula A14) 28 

     2 2a c a n n uS S K N T T M K T S          , (19) 29 

                                                 
1  It should be noted that, if the compensation takes place involving the highest value, i.e., 

including the share η of xM, than the denominator of (18) should be replaced by 

  2 1 a nM T T   . 
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Gza can be expressed as 1 

 
 

    

    

2 22

2 1 2 1 2 1

c n a n ua a
za

a a n n

S M K N T K T T SNT S
G

M T M T T M T

        
 

    
. (20) 2 

It can be verified that after the compensation, the Gini coefficient, 3 
calculated by (18), is greater than the before-compensation Gza. In fact, after some 4 
manipulations we yield that inequality (20) is verified if 5 

    

 

22

2 2

a n uc n

n a n

K T T SS M K N T

T T T

      



. 6 

In the l.h.s. of the above expression, the maximum is reached when 7 

 2 1c nS K N T    , whilst in the r.h.s. the minimum is reached when 0uS  . 8 

When both circumstances are verified, after elementary simplifications, the 9 

inequality becomes  2 1K M K      , from which we yield 10 

1K M   , which is trivially verified. 11 
As Gza ≥ Ga, a fortiori, Ga is lower than the Gini coefficient in (18). 12 
Let’s now compare the after-compensation Gini coefficient (18) with Gp, 13 

which can be written as  14 

 
  

    
0 2

2 1 4 1

a n u
p

a n n

S K T T S
G

M T T M T

   


   
. (21) 15 

Keeping in mind Gp, as in expression (21), and G, as in (18), let us 16 
investigate conditions under which it will happen, that:  Gp ≥ G. After some 17 
algebraic exercises we can see that it is equivalent to: 18 

 
 

  

  
0

2

4 1 2 1

a n u

n a n

K T T SS

M T M T T

  


  
. (22) 19 

However, inequality (22) does not hold, even when the left-hand side is 20 
maximum and the right-hand side is minimum. Indeed, in (22), the right-hand side 21 

is minimum when Su is zero: in this case it reduces to    1K M  .  22 

The maximum for the left-hand side is obviously obtained when S0 is maximum: as 23 
in the subset  1 2 1 2 1 1

, ,...., , , ,...., ,N N N K Kx x x x x x x  
 
 

 both the sum of absolute 24 

negative values and that of positive values is Tn, we have that 25 

   0max 4 1 nS K T   . Consequently, the maximum for the left-hand side  26 

of (22) is    1 1K M   . Thus, (22) never holds.  27 

Conversely, before the compensation, C SG   is greater than the after-28 

compensation Gini coefficient (18). In fact, after the compensation, S0 becomes 29 
zero; when this component disappears, the numerator of (8), expressed by (9), 30 
decreases proportionally more than its denominator. 31 
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The same does not happen for what concerns 
*
C SG  . By comparing 1 

expression (16) with (18), we see that the former is greater than the latter if  2 

 
  

  
0

0

2

4( 1 ) 2 1

a n u

n a n

K T T SS

S M K T M T T





  


     
. (23) 3 

Ceteris paribus, the maximum for the left-hand side is reached when S0 is 4 
maximum; that is, for S0 4( 1) nK T   . In this case the inequality (23) is 5 

 
 

    
( 1)

( 2) 1 2 1

u

a n

K SK

M M M T T

  
 

   
. 6 

If both M and K are large enough, the left-hand side term and the first 7 
addend on the right-hand side are almost equal; thus, generally, inequality (23) 8 

does not hold. It follows that 
*
C SG   cannot be greater than the Gini coefficient after 9 

the minimal compensation. 10 
We conclude that only two of the indexes considered here always decrease 11 

when negative values are transformed into zero when compensated by an 12 
equalitarian redistribution from positive values: the usual Gini coefficient (as 13 
defined by expression (3)) and C SG  . In adopting G we have to accept that it can 14 

be greater than 1. If we adopt C SG  , we have to be aware that in the denominator it 15 

presents an ad hoc correction: due to this ad hoc correction, comparisons among 16 

C SG   related to different situations, should be done only if the ratio  between 17 

  1 a nM T T   and S0 remains constant. 18 

NUMERICAL EXAMPLE 19 

In this section we will examine the measures discussed in the previous 20 
sections, as applied to the data generated from log-normal distribution. We will 21 
deal with two set of data, both consisting from 10,000 numbers. The first set 22 
includes 500 negative numbers generated from log-normal distribution with the 23 
parameters: (7.528; 0.812) (and with the sign inverted to negative), 1,500 zero’s 24 
and 8,000 positive numbers generated from log-normal distribution with 25 
parameters (5.428; 1.262). The second set consists from 1000 negative numbers 26 
generated from log-normal distribution with the parameters: (7.528; 0.812) (and 27 
with the sign inverted to negative), 1,500 zero’s and 7,500 positive numbers 28 
generated from log-normal distribution with parameters (5.278; 1.376). The 29 
relative sizes of negative, zero and positive samples were chosen as to mimic some 30 
known properties of empirical distributions of net incomes of Italian households. It 31 
is known, that the share of negative values varies over time, while the share of zero 32 
incomes remains relatively constant. Moreover, the parameters of the log-normal 33 
distributions were chosen to ensure realistic values of skewness and kurtosis for 34 
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both sets of data. The histograms of relative frequencies for set 1 and set 2 are 1 
presented in Figures 1 and 2, respectively. 2 

The main descriptive statistics of the data are summarized in the rows 2-14 3 
of Table 1. The minimal compensation described in the above sections for non-4 
decreasing series occurs at 8,568 and 9,767 positions for set 1 and set 2 5 
respectively, see row 15 of Table 1. 6 

Figure 1. Histogram of relative frequencies for random numbers constituting set 1. 7 
The right-hand-side picture is the same distribution but with truncated vertical 8 
axis, for better visualization of small relative frequencies for values far from 0 9 

  10 
Source: own preparation 11 

Figure 2. Histogram of relative frequencies for random numbers constituting set 2. 12 
The right-hand-side picture is the same distribution but with truncated vertical 13 
axis, for better visualization of small relative frequencies for values far from 0 14 

  15 
Source: own preparation 16 

Considering the simplest ways of dealing with negative values – erasing 17 
them – one can see, that in this way we omit 35% of variability for the set 1 (see: 18 

aS S  
= 0.650) and as much as 53.3% of overall variability for set 2 (as: aS S19 

 
= 0.467). Moreover, as erasing negative values make the overall average greater 20 

than the real average, the value of the Gini index calculated over such treatment 21 
will capture even less of  inequality than the fraction of variability captured 22 
suggest. Indeed, the ratio aG G  equals to 0.461 for the set 1 (almost 54% missing) 23 
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and 0.164 for the set 2 (as much as almost 84% missing). Surely, it doesn’t seem to 1 
be the proper way of dealing with data with this order of number of negative subset 2 
and with the overall average so influenced by the presence of negative values. 3 
Note, that it would suffice only one of these factors (strong underestimation 4 
of variability/strong overestimation of average value – of course, they are not 5 
independent) for the Gini value to be strongly influenced by such an artificial 6 
treatment of negative values.  7 

Table 1. Descriptive statistics 8 

 set number 1 set number 2 

number of positive values 8,000 7,500 

number of negative values 500 1,000 

number of zeros 1,500 1,500 

minumum value -15,643.30 -28,121.30 

maximum value 24,614.40 57,079.00 

total amount of positive values 3,872,080.98 3,850,597.15 

mean for positive values 484.01 513.41 

total amount of absolute negative values 1,262,786.83 2,636,622.28 

mean for negative values -2,525.57 -2,636.62 

overall mean 260.93 121.40 

coefficient of variation  4.80 14.01 

skewness 1.70 3.25 

kurtosis 65 197 

the lowest rank of the value for which the 

cumulative sum of ordered distribution 

is positive 

8,568 9,767 

Source: own calculations 9 

The second simple way of dealing with negative values – turning them into 10 
zeros – gives a similar picture. The fractions of overall variability captured in this 11 
treatment increase – it is 69.8% for set 1 ( = 0.698, which is an increase of 4.5 12 
percentage points as compared to the previous treatment of erasing zeros) and 13 
53.9% for set 2 (0.539, which is an increase of 7.2 percentage points as compared 14 
to the previous treatment of erasing zeros). Still, the fraction of the value of Gini 15 
index calculated for whole sets captured within this treatment is smaller than 16 
the fraction of overall variability captured, and is equal to 0.47 for set 1 and 0.17 17 
for set 2, what is – for both set 1 and set 2 – higher fraction than within treatment  18 
of just erasing negative values. 19 

If we consider the relevant share of variability not taken into account by Ga 20 
and Gza, we should conclude that these two indexes do not represent the actual 21 
variability, and consequently, they systematically underestimate the inequality. 22 
Moreover, there are problems in comparing distributions either with different 23 
percentages of units with negative values or with different ratios Tn/Ta. 24 
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As it was shown in the previous sections, values Gp, Gza, Ga, and *

C SG 
 are 1 

always smaller than the value of Gini index after minimal compensation and it 2 
indeed holds for both set 1 and set 2 (see Table 2). Moreover, simple geometrical 3 
interpretation shows, that GC-S has always to be smaller than Gini index after 4 
minimal compensation. Indeed, minimal compensation just turns the negative part 5 
of the Lorenz curve into zero. As GC-S  is equal to: 2(A + B)/(1 + 2A), while Gini 6 
after minimal compensation is equal to 2B, (A – denoting the area between negative 7 
part of the Lorenz curve and horizontal axis, while B – the area between positive 8 
part of Lorenz curve, horizontal axis and the line of equal share) it turns out that  9 
if for A > 0 Gini after minimal compensation will be smaller than GC-S for B < 1/2, 10 
that is, always. 11 

Table 2. Values of different measures of inequality discussed in the text 12 

 set number 1 set number 2 

G 1.558 4.453 

upper bound for G 1.968 5.344 

Gp=G/Gmax 0.792 0.833 

Sa/S 0.650 0.467 

Ga 0.719 0.729 

Ga/G 0.461 0.164 

(Sa+2NTa)/S 0.698 0.539 

Gza 0.733 0.756 

Gza /G 0.470 0.170 

Gc-s 0.947 0.996 
*

C SG   0.874 0.974 

G after min. compensation 0.913 0.984 

Source: own calculations 13 

However if we look at the two GC-S indexes, the effect of the minimal 14 
compensation does not appear to be so relevant as it is detected by the standard 15 
Gini coefficients. Indeed, due to the compensation, the Gini coefficient lowers 16 
from 1.558 to 0.913 in data set 1, and from 4.453 to 0.984 in data set 2..  17 
Conversely, the decrease of the two GC-S indexes appears much smaller in both data 18 
sets, as, before the compensation, the two indexes are 0.947 and 0.996, respectively 19 
(after the minimal compensation GC-S amd G coincide):   20 

On the basis of Frosini’s ([1984], p. 274) observation that the term 21 
concentration should be applied only when non-negative values are considered, we 22 
should keep in mind that, when negative values are considered, the Gini coefficient 23 
is no longer a concentration coefficient, it is just a relative variability index. 24 
By looking to the standard Gini coefficients, in Table 2, we can say that in the 25 
second data set the relative variability is 2.9 times greater than in the first one. 26 
After the minimal compensative equalitarian redistributions, the relative inequality 27 
decreases to 0.913 and to 0.984 in the two data sets, respectively. Moreover, as 28 
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after the compensations the negative values have been raised to zero, the two Gini 1 
coefficients can be considered concentration indexes. If we look at the Gp indexes, 2 
we can add that in the first data set, the relative variability is the 79.2 % of its 3 
potential maximum, whilst in the second it is the 83.3% of its potential maximum. 4 
After the compensative redistribution, even if the relative variability has decreased, 5 
the Gini coefficients are closer to their potential maximum, which is now 1,  6 
than they were before the compensation. 7 

CONCLUSIONS 8 

The purpose of this research was to indicate a valid operating procedure 9 
to calculate inequality when a distribution includes negative values. Generally, 10 
in overall income distributions only a few units have negative values. However, 11 
when we disaggregate overall income distributions into their sources, units having 12 
negative values can no longer be considered a negligible phenomenon. Another 13 
situation where many units with negative values can be observed is given by tax 14 
systems, which introduce family allowances through the form of negative income 15 
taxes. 16 

In this article we have shown that when a distribution includes negative 17 
values, neither dropping units with negative values nor transforming these values 18 
to zero are suitable practices. This should not be done if we do not want both to 19 
exclude a part of the variability that can be considerable and to make invalid 20 
comparisons among distributions, related either to different populations or to the 21 
same population in different periods. Even if the Chen et al. [1982] coefficient 22 
appears a feasible procedure that preserves the whole variability, it presents some 23 
limits: first, it is an ad hoc procedure and second, it presents several abnormal 24 
behaviours in some circumstances, as stressed by Raffinetti et al. [2015]. 25 
Moreover, even accepting Chen et al.’s  idea of compensating the negative values 26 
with the lowest positive values and not caring about abnormal behaviours, 27 
Chen et al. correction should be amended, as we highlighted in section “Negative 28 
values and adjustments…”. By applying the amendment, however, we have shown 29 
that the modified coefficient can increase even after an equalitarian redistribution. 30 
Instead of adopting ad hoc corrections, we suggest a procedure based on two 31 
instruments. In comparing inequality among different distributions, the standard 32 
Gini coefficient can be still conveniently used, even when dealing with negative 33 
values; G is no longer  a concentration measure but just a relative measure 34 
of variability. By dividing the Gini coefficient by its  upper limit, one yields the 35 
normalized index Gp, suggested by Raffinetti et al.. This normalized index is 36 
a measure of the percentage of the potential maximum variability, for each specific 37 
situation, keeping constant the sum of negative values and the sum of positive 38 
ones. Gp can be used unconditionally, in the cases which present the same ratio 39 
between the sum of absolute negative values and the sum of positive values, Tn/Ta. 40 
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APPENDIX A: THE DECOMPOSITION OF THE SUM OF ABSOLUTE 1 

DIFFERENCES 2 

The distribution splits into the two subsets of negative and non-negative values 3 

Consider the distribution 4 
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, (A1) 5 

We can split  6 

1 1

M M

i ji j
S x x

 
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1 1 1 1 1 1
2

N N N M M M

i j i j i ji j i j N i N j N
x x x x x x

        
           . 8 

In the terminology of Dagum [1997], the first and the third terms are within-group 9 
components and the second is the gross-between component, which corresponds to 10 
the between component because the two groups do not overlap, that is j ix x , 11 

i=1, 2,…., K+1, j=K+1,.K+2,….,M. Indeed, in this case we can write 12 

1 1

N M

i ji j N
x x

  
   as  1 1

N M

j ii j N
x x

  
  . Keeping in mind that 13 

 0 1,2,....,ix i N   and that  0 1, 2,....,ix i N N M    , it is easy to show 14 

that 15 

    , 1 1 1 1

N M N M

n a i j j i a ni j N i j N
S x x x x NT M N T

     
           (A2) 16 

In this article we denote the two within-group components as: 17 

 
1 1

N N

n i ji j
S x x

 
   , and 

1 1

M M

a i ji N j N
S x x

   
   .     (A3) 18 

 If the xi, i= 1, 2, …N, are set as equal to zero, we have: 19 

, 1 1

N M

n a j ai j N
S x NT

  
   . 20 

The distribution splits into the subset of minimal compensation  21 
and the complementary subset 22 

Consider the distribution of the variable as  23 
    1 2 1 2 1 1 21 2

, ,...., , , ,...., , , , ....,N N N K K K K Mx x x x x x x x x x    
 
 

  (A4) 24 

In (A4), all values are ranked in non-decreasing order. As in (A1),  25 
xi, i = 1, 2,…,N are the units with a negative value of the variable and, for the 26 
remaining units, i = N + 1, 2,…,M, xi ≥ 0. In (A4), xK+1 appears twice: the former 27 
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as (xK+1)1, with weight 1 11 1

K K

i K i Ki i
x x x x   

     and the latter as 1 

(xK+1)2, with weight (1  η), so that 11 1

N K

i i K ni i N
x x x T  

     , 2 

11
0

K

i Ki
x x 
   and   1 2

1
M

K i a ni K
x x T T   

    . 3 

We can split (A4) into two subsets: 4 
  1 2 1 2 1 1

, ,...., , , ,...., ,N N N K Kx x x x x x x  
 
 

  and    1 22
, ....,K K Mx x x 

 
 

 (A5) 5 

and, coherently, we can split the sum of absolute differences as:  6 

 11 1 1 1 1
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       1 11 2 1 2
2 1
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j i K i j Ki j K i j K
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   12 2 2
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x x x x      
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In (A6), the first addend is the sum of absolute differences within the first 10 
subset in (A5) and the third addend is the sum of absolute differences within 11 
the second subset. The second addend represents the sum of absolute differences 12 
between the elements of the two subsets: as the elements in the first subset are 13 
never greater than those in the second, all the differences are non-negative and 14 
the modulus symbol can be omitted. 15 

We denote 16 

  0 11 1 1
2
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i j K ii j i
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and 18 
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For what concerns the between-subset component,  20 

       0, 1 11 2 1 2
1

K M K M

u j i K i j Ki j K i j K
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we can split and rearrange it as 22 
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  12
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The six terms can now be conveniently combined as 25 

●    
12

1
M

j a nKj K
K x Kx K T T
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i Ki
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● by adding and subtracting 1Kx   to 28 
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 1 11 1 2

K K M

i K i K ji i j K
x x x x x     

        0 a nT T    . 1 

The results here allow us to rewrite the between component simply as: 2 

   0,u a nS K T T   . (A10) 3 

Therefore, we can represent (A6) in the form: 4 

   0 2 a n uS S K T T S     . (A11) 5 

Define the sum of absolute values within the subset  6 

 1 2 1 1
, ,...., ,N N K Kx x x x  

 
 

: 7 

  11 1 1
2

K K K

c i j K ii N N i N
S x x x x     

      . (A12) 8 

Let’s now consider the sum of absolute differences between this subset, 9 

which contains the lowest non-negative values, and  1 22
, ....,K K Mx x x 

 
  : 10 

, 11 2 2

K M M

c u i j i Ki N j K i K
S x x x x      

       11 

   1 1 11
1 1

K

K i K Ki N
x x x x     

       12 

      12 1 2
1 1

M K M

j i j Kj K i N j K
K N x M K x x M K x      

          13 

     
1 1

1 1
K

iK i N
K N x x 

  
     ; 14 

by adding the first addend to the third and the second addend to the sixth, we yield 15 

   
2 1

M K

j ij K i N
K N x M K x 

   
        16 

     1 1
1 1K K

M K x K N x  
      . 17 

If we now add    11 KK N x      to the first addend and subtract it from the 18 

fourth, and we subtract   1KM K x     from the second addend and we add it 19 

to the third, we yield 20 

         1 11 1a n n K KK N T T M K T x x                , (A13) 21 

having used  
12

1
M

a n j Kj K
T T x x 

 
     and 11

K

n i Ki N
T x x  

  .  22 

Keeping in mind (A12), (A13) and (A8), Sa can be written as  23 

     2 2a c a n n uS S K N T T M K T S          .   (A14) 24 

Let’s now consider the distribution  25 
      1 2 1 2 1 1 2

, ,...., , , ,...., , , 0 ,0....,N N N K K a nx x x x x x x T T  
  

. (A15) 26 

In (A15), (xK+1)1 has weight η and (0)2 has weight (1 η).  27 
The within component S0 remains unchanged as it was for (A7); conversely 28 

Su becomes: 29 

     
1

2
2 0 2 0 1

M

u a n a ni K
S T T T T 



 
        30 
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     2 2 2 1a n a nM K T T T T         1 

  2 1 a nM K T T     . (A16) 2 

In distribution (A15), the two groups overlap; then we have to consider  3 
the gross-between component:  4 

  0, 1 11 2 1 2
1

K M K M

u j i K i j Ki j K i j K
S x x x x x x       

          .  (A17) 5 

Also, in this case we can avoid modulus but we have to express S0,u by 6 
adding to (A10) the transvariation component: 7 

    

   

1

0, 1 2 1

1

1 12

2 0 0 1

0 1

K M KT
u i ii N j K i N

M

K Kj K

S x x

x x



  



     



  

    


   


  


8 

   

   
1 1

1 1

2 2 2 1

2 2 1

K K

i ii N i N

K K

M K x x

M K x x



  

   

 

     

    

 
9 

      1 11 1
2 2 2 1

K K

i K i Ki N i N
M K x x x x      

         10 

    11
2 1

K

i Ki N
M K x x  

     =  2 1 nM K T   . (A18) 11 

Therefore, (A17) becomes  12 

  0, 0,2 2 T
u a n uS K T T S        2 4 1a n nK T T M K T        .  (A19) 13 

Using (A16) and (A19), the overall sum of absolute differences becomes  14 

    0* 2 4 1a n n uS S K T T M K T S           15 

     0 2 1 4 1a n nS M T T M K T        .  (A20) 16 

In (A20),  17 

  0 2 1 a nS M T T   =  1 1
2

M i

i ji j
x x

 
  ,  18 

which would be the sum of absolute differences if the rank in (A15) are the same as 19 
in (A1). For more details on the information provided by the different ordering, see 20 
[Lambert, 2001 Ch. 2]. 21 

22 
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APPENDIX B: OPERATING FORMULAE 1 

In order to simplify and fasten calculations, one can apply the operating 2 
formulae enlisted in this appendix. 3 

 
1 1

P P

a i ji j
S x x

 
    

1 1
4 2 1

P P

i ii i
x i P x

 
    , (B1) 4 

 5 

  
1 1 1 1

4 2 1
N N N N

n i j i ii j i i
S x x x i N x

   
        . (B2) 6 

 7 

 0 11 1 1
2

K K K

i j K ii j i
S x x x x   

       8 

   2
11 1

4 2 2 1
K K

i i Ki i
x i K x x  

     , (B3) 9 

 10 

where 11

K

i Ki
x x 

  11

K

i Ki
x x 

  .  11 

If 
1

0
K

ii
x


 , then 0 1

4
K

ii
S x i


  . 12 

  12 2 2
2 1

M M M

u i j i Ki K j K i K
S x x x x      

        13 

    1

2 2 1
4 2 2 2 1

M M K

i i ii K i K i
x i M K x M K x



    
          14 

   1

11 2
2

K M

i i Ki i K
x x x



  

 
  
  . (B4) 15 

 16 

If 
1

0
K

ii
x


 , then  

1 1
4 2 1

M M

u i ii K i K
S x i M K x

   
     . 17 


