PL EN


2019 | 4 (54) | 60-73
Article title

Methodological apparatus and instruments for personalization in adaptive tutoring systems

Content
Title variants
PL
Adaptacyjny system wspomagania nauczania: aparat metodologiczny oraz narzędzia personalizacji
Languages of publication
EN
Abstracts
EN
Most learning difficulties are rooted in the individual learner’s perspective. As a common practice, modern educational systems are formed on the basis of a set of standardized didactic methods, which are then used repeatedly in the teaching of the whole population. However, every learning group consists of individuals with different cognitive model and individual learning process. The key to provide effective knowledge absorption is to adapt the set of teaching methods and use it in such a way that the individual characteristics of the learner are taken into account to the highest, reasonable extent. This paper addresses the problem of defining the personalization and adaptability of the learning process in the context of tutoring systems. The authors propose a methodological apparatus for identifying and acquiring the user’s individual characteristics and transforming it into a set of tools and instruments that can provide adaptability in tutoring systems.
PL
Większość problemów związanych z nauczaniem odnosi się do perspektywy uczącego się. Obecne systemy edukacyjne stanowią zbiory ustandaryzowanych metod dydaktycznych, które następnie stosowane są w powielarny sposób w nauczaniu całych zbiorowości. Grupy składają się jednak z indywidualności, a każda z nich reprezentuje odmienny model kognitywny oraz indywidualny proces uczenia się. Kluczem do efektywnego uczenia się jest takie dostosowywanie zestawu metod dydaktycznych, aby uwzględniały indywidualne cechy uczącego się oraz były w stanie adaptować się z czasem do poziomu osiąganych postępów i zmieniających się potrzeb. W artykule podjęto problem adaptacyjności w inteligentnych systemach wspomagających nauczanie. Autorzy proponują instrumentarium do identyfikacji indywidualnej charakterystyki użytkownika, a następnie transformacji i wykorzystania jej w tworzeniu mechanizmów umożliwiających uzyskanie procesu uczenia dostosowanego do aktualnych, indywidualnych potrzeb użytkowników systemu.
Year
Issue
Pages
60-73
Physical description
References
  • Avella, J. T., Kebritchi, M., Nunn, S. G., & Kanai, T. (June 2016). Learning analytics methods, benefits, and challenges in higher education: a systematic literature review. Journal of Interactive Online Learning, 20(2), pp. 1-17.
  • Bacon, L., & Mackinnon, L. (2014). A flexible framework for metacognitive modelling and development. Proceedings of the International Conference on e-Learning.
  • Baker, R. S., & Siemens, G. (2014). Educational data mining and learning analytics. In K. Sawyer (Ed.), Cambridge Handbook of the Learning Sciences (2 ed., pp. 253-274).
  • Bicans, J. (2015). The acquisition of context data of study process and their application in classroom and intelligent tutoring systems. Applied Computer Systems, 27-32. doi:10.1515/acss-2015-0016
  • Biggs, J. (1985). The role of metalearning in study processes. British Journal of Educational Psychology, 50(3), pp. 185–212.
  • Campbell, J. P., & Oblinger, D. G. (2007). Academic analytics: a new tool for a new era. EDUCAUSE Review, 42(4), 40–57.
  • Clow, D. (2012). The learning analytics cycle: closing the loop effectively. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (pp. 134-138). New York: ACM. doi:10.1145/2330601.2330
  • Dweck, C. (2016). Mindset: the new psychology of success. New York: Ballantine Books.
  • Edelman, G. M. (1999). Building a picture of the brain. Annals of the New York Academy of Sciences, pp. 68-89.
  • European Comission. (2012). The European qualification framework for lifelong learning. Education and Culture DG.
  • Fadel, C., Trilling, B., & Bialik, M. (2015). Four-dimensional education: the competencies learners need to succeed. Boston: CreateSpace Independent Publishing Platform.
  • Jugo, I., Kovačić, B., & Slavuj, V. (2016). Increasing the adaptivity of an intelligent tutoring system with educational data mining: a system overview. International Journal of Emerging Technologies in Learning (iJET), 11(03), 67-70. doi:10.3991/ijet.v11i03.5103
  • Maudsley, D. B. (1979). A theory of meta-learning and principles of facilitation: an organismic perspective. Toronto: University of Toronto.
  • Mayer, D. P., Mullens, J. E., Moore, M. T., & Ralph, J. (2000). Monitoring school quality an indicators report. Statistical analysis report. Office of Educational Research and Improvement, US DoE. Washington, DC: National Center for Education Statistics.
  • Niesler, A., & Wydmuch, G. (2008). Predisposition-based intelligent tutoring system – adaptive user profiling in human-computer interaction. Proceedings of the Fourth International Conference on Web Information Systems and Technologies, 1. Funchal, Portugal.
  • Niesler, A., & Wydmuch, G. (2009). User profiling in intelligent tutoring systems based on Myers-Briggs personality types. Proceedings of the International MultiConference of Engineers and Computer Scientists. Volume I. Hong Kong: IMECS.
  • Picciano, A. G. (2012). The evolution of big data and learning analytics in American higher education. Journal of Asynchronous Learning Networks, 16(3), pp. 9-20.
  • Schneider, D. K., Class, B., Benetos, K., Da Costa, J., & Follonier, V. (2014). Learning process analytics for a self-study class in a Semantic Mediawiki. Proceedings of The International Symposium on Open Collaboration. New York: ACM. doi:10.1145/2641580.2641605
  • UNESCO. (2012). International Standard Classification of Education ISCED 2011. Montreal, Quebec: UNESCO Institute for Statisctics.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-c20276b6-e147-47c7-a0c4-a750cbe09598
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.