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The paper presents stochastic modelling of a single server, finite buffer Markovian queueing sys-
tem with discouraged arrivals, baulking, reneging, and retention of reneged customers. The Markov 
process is used to derive the steady-state solution of the model. Closed-form expressions using proba-
bility generating functions (PGFs) are derived and presented for both classical and novel performance 
measures. In addition, a sensitivity analysis is carried out to study the effect of the system parameters 
on performance measures. A numerical problem is also presented to demonstrate the derived results 
and some design aspects. 
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1. Introduction 

In modelling real-life problems involving congestion, queueing theory plays a vital 
role as this theory analyses ‘idealised’ models, which typically may not exactly exist in 
practice but can serve as approximations ranging from reasonable to excellent. In to-
day’s competitive world, a customer decides to join the queue only when a short wait is 
required. Customers get impatient with the prospect of waiting. Such impatience trans-
lates into two types of customer behaviour, viz. baulking and reneging. Recently, these 
concepts were incorporated on a two-server Markovian model by Bouchentouf and 
Messabihi [3], Som and Kumar [21]. Applications of queueing with impatience can be 
seen in traffic modelling, business and industries, IT sectors, health sectors, medical 
sciences, and so forth (cf. [19]). It is important to note that customers’ impatience has 
a very negative impact on the queueing system under investigation. In many situations, 
the arrival rate of customers into the system depends on the system size instead of a con-
stant rate. This is known as discouraged arrival and is one form of state dependence. In 
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this type of system, arrivals get discouraged from joining the queue when more and 
more people are present. Essentially, this results in lowering the arrival rate as the num-
ber of customers in the system increases. Natvig [18] first introduced the concept of 
discouraged arrival in M/M/1 queue. Customers with impatience and discouragement 
have an impact on the system performance of standard queuing systems. Queues with 
discouraged arrivals have applications in computers with batch job processing where 
job submissions are discouraged when the system is frequently used and arrivals are 
modelled as a Poisson process with a state-dependent arrival rate. As stated earlier, this 
discouragement impacts the arrival rate of the queuing system. 

On the other hand, if a customer on their arrival finds the queuing system non-
empty, they might decide not to join the queue. In queuing parlance, this is known as 
baulking. Haight [9] provides a rationale that might influence a person to baulk. It re-
lates to the perception of the importance of being served which induces an opinion 
somewhere in between urgency so that a queue of a certain length will not be joined to 
indifference where a non-zero queue is also joined. Baulking can be classified into two 
types, viz. state-independent baulking (SIB) and state-dependent baulking (SDB). In the 
case of SIB, the baulking rate remains constant in all the states of the system. Reversely, 
if baulking rate depends on the state of the system, we refer to it as SDB. In the second 
type of baulking, the probability that a customer will baulk increases as the queue length 
is higher, and where baulking probability is a function of the state of the system [16]. 
We shall assume SDB throughout this paper. 

Again, some arriving customers do not baulk and decide to join the queue. Among 
those who join, it is commonly observed that some get impatient with waiting and leave 
the system without completely receiving service. This is known as reneging. Depending 
upon the particular time, customers could renege. Reneging customers can be of two 
types, viz. reneging till the beginning of service (referred to as R_BOS), and reneging 
till the end of service (referred to as R_EOS). R_BOS can be seen in queuing systems where 
customers can renege only as long as it is in the queue. Once service begins, it cannot renege. 
On the other hand, a customer can renege not only while waiting in a queue but also while 
receiving service in the case of R_EOS. A common example of the first type is custom-
ers queuing at a beauty parlour. In the parlour, once any kind of service (haircut, facial, 
etc.) starts, the customer cannot renege. Common examples of the second type are pro-
cessing or merchandising of perishable goods, hospital emergency room/O.T., handling 
critical patients, etc. A critical patient may expire at the O.T. table of the emergency 
ward of a hospital which would be an example of reneging while service is going on. 

When this impatience increases and customers leave before being served, some re-
medial actions must be taken to retain customers as this loss implies loss both in terms 
of immediate revenues as well as reputation to a business manager. The current business 
environment cannot afford this. One such remedial action considered in the literature 
involves providing an incentive for the customer not to renege. These incentives induce 
a desire on the impatient customer to retain in the system. Such an impatient customer 
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(due to reneging) may hence be convinced to stay in the service system by introducing 
certain retention policies. Such customers are termed as retained customers. Under this 
framework, if a customer gets impatient (due to reneging), (s)he may leave the queue 
with probability say p and may remain in the queue for service with probability q such 
that p + q = 1 [3, 12]. This is the concept referred to as retention of reneging customers. 

The modelling approach of a single server finite buffer Markovian queuing model 
incorporating the additional challenges of discouraged arrival and state-independent 
baulking is the basis of this paper. The importance of the queuing model stems from the 
fact that in the classical M/M/1 model, it is assumed that the system can accommodate 
any number of units. In practice, this may seldom be the case. We have thus to consider 
the situation such that the system has limited waiting space and can hold a maximum 
number of k units (including the one being served [17]. Though this model has been 
analysed, however, to the best of our knowledge, the said model with the added com-
plexity of discouraged arrival, retention of reneged customers, and state-dependent 
baulking has not been dealt with in the literature. Also, the closed-form expressions of 
various performance measures are not available for the said model. Only a restricted 
version of the single and multi-server queuing model for just two servers assuming im-
patient customers is available [15, 4]. This work, therefore, aims to fill this gap in the 
literature. 

In this paper, we shall analyse a single server Markovian queuing system M/M/1/k 
with discouraged arrivals, baulking, reneging, and retention of reneged customers. As 
for baulking, we assume that each customer has a state-dependent baulking probability. 
It will be assumed that if the customer on arrival observes the system to be in state i, the 
probability that he will baulk is i/k, i = 1, 2, ..., k. With this set-up, the finite buffer re-
striction can also be seen as the state from which customer baulks with probability 1 (k/k). 
It may be noted that our formulation requires that baulking is possible only when the 
system is non-empty. There is no baulking from an empty system. The arrival and ser-
vice rates are assumed as λ and μ, respectively. We also assume that if a customer find-
ing every server busy arrive with arrival rate that depends on the number of customers 
present in the system at that time, i.e., if there are n (n > 1) customers in the system, the 
new customer enters the system with rate λ/(n + 1). As for reneging, each customer 
joining the system is assumed to have random patience time following expν. It is also 
assumed that when a customer gets impatient (due to reneging), (s)he may leave the 
queue with some probability, say p, and may remain in the queue for service with prob-
ability q = 1 – p. 

The subsequent sections of this paper are structured as follows. Section 2 contains 
a literature review. Section 3 and section 4 contain the derivation of steady-state proba-
bilities and performance measures. A numerical example is discussed in section 5. We 
perform sensitivity analysis in Section 6. Concluding statements are presented in Sec-
tion 7. The appendix presented in Section 8 contains some derivations. 
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2. Review of literature 

Even though one can observe reneging and baulking in our day-to-day life, it is 
not very often that one can locate a paper analysing these features simultaneously in 
a queuing system with the additional restriction of discouraged arrivals and retention 
of reneging customers [13, 10]. Even if these were analysed, closed-form expressions 
of important performance measures are not available [1, 12, 14]. One of the recent 
works on baulking and reneging was carried out by Saikia, Medhi, and Choudhury 
[20] where they analyse a multi-server Markovian queuing system under the assump-
tion that customers may baulk as well as renege. A specific baulking rule where the 
baulking probability of the customer decreases as the state of the system goes up, i.e., 
reverse baulking as well as position-dependent reneging (PDR), a very relevant for-
mulation from the practical point of view, are considered in this paper. They derive 
the generating function of the stationary system size distribution and also obtain the 
mean system size along with the other performance measures. But they do not con-
sider the concept of discouraged arrival, retention of reneged customers and finite 
buffer restriction. Bouchentouf and Guendouzi [4] offer a study where an MX/M/c 
Bernoulli feedback queuing system with variant multiple working vacations and im-
patience timers which depend on the states of the servers is considered. Using the 
probability generating functions (PGFs), they derive the steady-state solution of the 
model and then obtain useful performance measures. A numerical study is performed 
to explore the effects of the model parameters on the behaviour of the system along 
with an economic analysis. But their model neither assumes baulking, nor discourages 
arrival or retention of reneged customers, nor includes finite buffer restriction. An-
other relevant work is carried out by Bouchentouf, Yahiaoui, Kadi and Majid [5] 
where they consider the customers’ impatience for a single server Markovian model 
under K-variant working vacation policy, waiting server, Bernoulli feedback, baulk-
ing, reneging, and retention of reneged customers. Using the probability-generating 
function (PGF) technique, they obtain the steady-state solution of the system. Useful 
performance measures of the considered queuing system are derived. A cost model 
was developed. The parameter optimisation is also carried out numerically, using a 
quadratic fit search method (QFSM). Finally, numerical examples are provided to vis-
ualise the analytical results. Even if the authors consider reneging, baulking, and re-
tention of reneged customers, the concept of discouraged arrival is not applied. The 
reneging times are assumed to be exponentially distributed. They obtain the steady-
state solution of the model and also derive some performance measures. The effect of 
the probability of retention on the average system size is studied. Some particular 
cases of the model are also derived and discussed. Awasthi [2] consider an M/M/1/k 
queuing system with reverse baulking and reverse reneging. Steady-state solutions of 
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the model are obtained and formulae for different performance measures are con-
structed. Fazlollahtabar and Gholizadeh [8] consider an M/M/1/N queuing system with 
encouraged arrival. They describe the theory of queuing in a vague environment in 
which encourage arrivals rates and service rates are considered to be vague numbers. 
An economic analysis of the model is also presented by developing a cost model pro-
ceeding to exert uncertainty of the primary information when some of the parameters 
of the models are vague. A similar type of work is also carried out by Kordasiabi, 
Gholizadeh, Fazlollahtabar and Javadian [11] where they analyse the proficiency of 
a single server Markovian finite buffer queuing model with unpleasant services and 
encouraged arrival to compare the policies for service delivery. They also examine 
the economic analysis of the cost in an uncertain environment by considering arrival 
rate, service rate and the processing time as a vague number. Kumar, Som and Jain 
[13] considered an M/M/1/N feedback queuing system with reverse baulking where 
they assume that feedback customer in queuing literature refers to a customer who is 
unsatisfied with incomplete, partial or unsatisfactory service and comes back to join 
the system. They obtain the steady-state solution and compute some performance 
measures of the model. But they do not consider the concept of reneging and discour-
aged arrival. A two-server Markovian queuing model with discouraged arrivals, re-
neging, and retention of reneged customers is analysed by Kumar and Sharma [14], 
but baulking is not assumed. In this paper, they consider a two heterogeneous server 
Markovian queuing model with discouraged arrivals, reneging, and retention of re-
neged customers. Here, they do not consider the other reflection of impatience, i.e., 
baulking and finite buffer restriction. The steady-state probabilities of system size are 
derived explicitly by using an iterative method. Some useful measures of effectiveness 
are also derived and discussed. Some queuing models are also derived as the special 
case of this model. Ammar and Sherbiny [1] study a single server finite capacity Mar-
kovian queue with discouraged arrivals and reneging, and obtain the transient solution 
of the model by matrix method. Kumar and Sharma [12, 15] consider the Markovian 
queueing system with discouraged arrivals and retention of reneged customers. 
Steady-state solutions are derived explicitly and cost-profit analysis of the model is 
also presented. Some measures of effectiveness are discussed. A special case of the 
model is also discussed. However, they did not include baulking, finite buffer re-
striction. Also, a closed-form expression of performance measures are not available. 
Rasheed and Manoharan [19] study a Markovian queueing system in which the arrival 
rate is state-dependent and whose service speed is regulated according to the number 
of customers in the system. Steady-state probabilities are derived and some perfor-
mance measures such as expected number in the system/queue and expected waiting 
time in the system/queue are obtained. Multiple server discouraged arrival model hav-
ing one service switch and single server discouraged arrival model having one and 
two services switches are obtained as special cases, but they did not assume custom-
ers’ impatience. El-Paoumy and Nabwey [7] analyse M/M/2/N queuing model with 
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baulking, reneging, and heterogeneous server, and obtained the steady-state solution. 
But they do not consider discouraged arrival and retention of reneged customers. 

From the review of the existing literature, it is clear that various queuing models 
have been analysed, considering customers’ impatience. However, the concept of dis-
couraged arrival and application of retention strategy finds little mention. Though 
a single server finite buffer Markovian model has been analysed, however, to the best 
of our knowledge, the said model under the assumption of discouraged arrival, reten-
tion of reneged customers, and state-dependent baulking have not been dealt with in 
the literature. Therefore, we try to address these gaps in this paper. 

3. The system-state probabilities 

In this section, the steady-state probabilities are derived by the Markov method. We 
first analyse the case where customers renege only from the queue. Under R_BOS, let 
pn denote the probability that there are n customers in the system. The equations are: 
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where p0 is obtained from the normalising condition 
0
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Under R_EOS, where customers may renege from the queue as well as while being 
served, let qn denote the probability that there are n customers in the system. Applying 
the Markov theory, we obtain the following set of steady-state equations: 
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4. Performance measures 

Analysis of performance measures is important as these allow the cause of various 
queuing issues to be identified. Importantly, many of these are related to customers’ 
dissatisfaction and are therefore of great interest to the management of the queuing 
system. We provide below the closed-form expression of some performance 
measures. 

Mean system size (L) and mean queue size (Lq). An important measure in queuing 
system analysis is the mean number of customers in the system which is traditionally 
denoted by L. The derivation of mean system size (L) and mean queue size (Lq) for two 
reneging rules are presented in the appendix. Thus, mean system size and mean queue 
size under R_BOS are given by 
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Under R_EOS, mean system size and mean queue size are given by 
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Effective arrival rate (λe). Customers who arrive in the system may not be able to 
join because of baulking and due to finite buffer restrictions. Moreover, we assume that 
customers arrive into the system at the rate λ/(n + 1). Thus, there exists a difference 
between the overall arrival rate and the effective arrival rate in the system. The closed-
form expression of the effective arrival rate under the two rules of reneging is given by 
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Average reneging rate (Avgrr). We assume that the customer who is at state n has 
a random patience time following expν. Thus, the reneging rate of the system would 
depend on the state of the system as well as the reneging rule. The average reneging rate 
under both the reneging rule is given by 
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 Mean rate of losing a customer. In a real-life situation, customers who baulk or 
renege represent the business lost. Customers are lost to the system in three ways due 
to baulking, reneging and finite buffer restriction. Management would like to know the 
proportion of total customers lost to have an idea of total business lost. 
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Hence the mean rate at which customers are lost (under R_BOS) is 
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and the mean rate at which customers are lost (under R_EOS) is 
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where ( )eλ λ−  is loss due to finite buffer. 
The proportion of customer lost and proportion of completing receipt of service can 

now be easily determined from the above results under R_BOS and R_EOS separately. 

Actual load of the server. The customers who leave the system from the queue do 
not receive service. Consequently, only those customers who reach the service station con-
stitute the actual load of the server. From the server’s point of view, this provides a measure 
of the amount of work (s)he has to do. Let us call the rate at which customers reach the 
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In the case of R_EOS, one needs to recall that customers may renege even while 
being served and only those customers who renege from the queue will not constitute 
any work for the server. Thus, (1-proportion of customers lost due to reneging from the 
queue out of those joining the system) 
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Average attrition rate (AAR). Out of those customers who join the queuing sys-
tem, some would leave after service and few others would leave because of impatience 
without service. Hence, management has to arrange sufficient infrastructural facilities 
to account for customers leaving the system through these two streams. We now present 
the expression for the average attrition rate (AAR) under both the reneging rule. 
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Percentage reduction in attrition rate due to retention strategy out of those who had 
joined the system is given by 
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Average retention rate (ARR). We recall that out of those customers who join the 
queuing system, some would renege and many others would be retained. It is therefore 
of interest to the management to have an idea of the rate at which customers are retained. 
We now present the expression for ARR under R_BOS and R_EOS 
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Proportion of customers retained due to retention strategy out of those who joined 
the system under both the reneging rule is given by 
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Avgrr( 1) Avgrr( 1)
Avgrr( 1)
p p

p
= − <

=
 

Impact of discouraged arrival (DA). One of the features of our model is the as-
sumption of discouraged arrival wherein the arrival rate of customers is a function of 
the state of the system. To give management a sense of business lost because of discour-
aged arrival we construct the following performance measure. 

The proportion of customer lost due to discouraged arrival under both the reneging 
rule is given by 

(without ) (with )
(without )

e e

e

DA DA
DA

λ λ
λ

−
 

5. Numerical example 

To illustrate the use of our results, we apply them to a queuing scenario. We quote 
below an example from Taha [22]. 

The time for barber Joe to give a haircut is exponential with mean of 12 minutes. 
Because of his popularity, customers usually arrive (according to a Poisson distribu-
tion) at a rate much higher than Joe can handle 6 customers per hour. Joe really will 
feel comfortable if the arrival rate is effectively reduced to about 4 customers per hour. 
To accomplish this goal, he came up with the idea of providing limited seating in the 
waiting area so that newly arriving customers would go elsewhere when they discover 
that all the seats are taken. How many seats should Joe provide to accomplish his goal? 

Solution. This is a design problem where the system manager (Joe, the barber) de-
sires a system design in respect of the size of the waiting area (number of chairs for 
waiting customers). 

Presently, λ = 6/h and μ = 5/h. As required by Joe, we examine the effect of limited 
seating arrangement in the waiting area with different choices of k. Though not explic-
itly stated, it is necessary to assume reneging and baulking. In today’s competitive 
world, prompt customer service, being the expectation, is all the more reason to assume 
that customers are all of the reneging types. Since Joe has not collected data on customer 
reneging rate in his shop, we consider alternative possible Markovian reneging rates of 
120 min (ν = 0.5) and 100 min (ν = 0.6). Also, the probability that a customer will renege 
is considered as p = 0.01. Given the fact that service in a barbershop is being analysed, 
the reneging rule would be R_BOS. We further assume that the probability of baulking 
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by an arriving customer is i/k, i = 1, 2, ..., k where i is the state of the customer observes 
the system to be in on its arrival. 

Various performance measures of interest computed under different scenarios are 
given in Tables 1 and 2. These measures were arrived at using a C++ program coded by 
the authors. Different choices of k were considered. Results relevant concerning Joe’s 
desire to limit the arrival rate of customers into his service station to something around 
4/h are presented in the tables. 

Table 1. Performance measures assuming λ = 6/h, μ = 5/h, ν = 0.5/h, and p = 0.01 

Performance measure 
 Size of the waiting area 

4 
(k = 5) 

5 
(k = 6) 

Arrival rate of customers reaching service station λs  3.98637  4.05979 
Effective arrival rate λe 4.15665 4.66008 
Fraction of time server is idle p0 0.31618 0.295430 
Average length of the queue 1.02855  1.12922 
Average length of the system 1.46941 1.576872 
Mean reneging rate 0.52128 0.50529 
Mean rate of customers lost 1.94363  1.74021 
Proportion of customers lost due to reneging,  
baulking, and finite buffer 0.35179 0.33078 

Average baulking rate 0.45993 0.33999 
Average retention rate 0.78553 0.79958 
Average attrition rate 4.65666 4.75996 
Proportion of customer lost due to discouraged arrival 0.62609 0.63043 
Proportion of customer retained due to retention strategy 
out of those who joined the system 0.47597 0.56321 

Percentage reduction in attrition rate due to  
retention strategy out of those who joined the system 0.05462 0.06636 

 
Since a larger waiting area would also entail additional expenditure/investment, Joe 

needs to examine how the performance measures differ across different choices of k. In 
the case the reneging behaviour of customer follows exp0.5 distribution, it appears from 
Table 1 that an ideal choice of k could be 5 (seating space in waiting area is 4) with  
λs = 3.98637. In the case the reneging distribution is exp0.6, then k = 7 appears to be 
close to Joe’s target with λs = 4.00989 (Table 2). 

A few additional issues regarding the computed performance measures may be of 
interest: 

• Numerically, the arriving rate of customers reaching the service station (λs) has 
been computed to be lower than the effective arrival rate (λe) both in Tables 1 and 2. 
This is because some of the customers who join leave the system due to reneging and 
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do not reach the service station. Thus, the number of customers who reach the service 
station are much less than those who join the system. 

Table 2. Performance measures assuming λ = 6/h, μ = 5/h, ν = 0.6/h, and p = 0.01 

Performance Measure 
 Size of the waiting area 

5 
(k = 6) 

6 
(k = 7) 

Arrival rate of customers reaching service station λs  3.45154 4.00989 
Effective arrival rate λe 4.60658 4.69991 
Fraction of time server is idle p0 0.30616 0.29741 
Average length of the queue 1.02859 1.12923 
Average length of the system 1.56944 1.87691 
Mean reneging rate 0.57495 0.52973 
Mean rate of customers lost 1.96353  1.84012 
Proportion of customers lost due to reneging,  
baulking, and finite buffer 0.36389 0.34177 

Average baulking rate 0.41573 0.39673 
Average retention rate 0.79545 0.80695 
Average attrition rate 4.75656 4.85993 
Proportion of customer lost due to discouraged arrival 0.62771 0.63239 
Proportion of customer retained due to retention strategy 
out of those who joined the system 0.46988 0.55319 

Percentage reduction in attrition rate due to  
retention strategy out of those who joined the system 0.05893 0.06889 

 
• Joe aims to reduce his load from 6/h to 4/h. In other words, he is not willing to 

serve 1/3rd of his potential customers. This aspect has been reflected in the proportion 
of customers lost due to reneging, baulking, and finite buffer. 

• Because Joe serves fewer customers, he is idle about 30% of his time. 
• The retention strategy adopted by Joe appears to be effective as the average reten-

tion rate is around 80%. 
• The impact of discouraged arrival appears to be substantial because more than 

60% of the customers have been lost because of the same. 

6. Sensitivity analysis 

It is interesting to examine and understand how server utilisation varies in response 
to change in system parameters. The four system parameters of interest are λ, μ, ν, k. 
We place below the effect of change in these system parameters on server utilisation. 
For this purpose, we shall follow the following notational convention in the rest of this 
section. 
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pn(λ, μ, ν, k) and qn(λ, μ, ν, k) will denote the probability that there are n customers 
in a system with parameters λ, μ, ν, k in steady state under R_BOS and R_EOS, respec-
tively. 

i) Let λ1 > λ0, then 
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which is true. Hence, p0 decreases as λ increases. 
ii) Let μ1 > μ0, then 
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which is true. Hence, p0 increases as μ decreases. 
iii) Let ν1 > ν0, then 
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which is true. Hence, p0 increases as ν increases. 
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iv) Let k1 > k0, then 
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which is true. Hence, p0 decreases as k increases. 
Similar results are obtained under R_EOS. The managerial implications of the 

above results are obvious. 
We can also study the variations in the other performance measures with response 

to change in system parameters numerically. We consider here the values of different 
system parameters from the numerical example mentioned in Section 5 under R_BOS. 
The results are computed using C++ program. 

Table 3. Variations in L, Avgrr, p0, ARR, proportion of total lost, λs and Effl  
with respect to mean arrival rate λ considering (μ =  5/h, ν = 0.5/h, and p = 0.01, k = 5) 

λ L Avgrr ARR p0 AAR Proportion of  
total lost λs Effl 

6 1.46941 0.52128 0.95453 0.31618 4.65666 0.35179 3.98637 4.15665 
7 1.87756 0.73041 1.53487 0.29993 4.82512 0.65296 4.24709 4.45126 
8 2.13671 0.90543 1.95786 0.26073 5.01871 0.808092 4.68172 4.97875 
9 2.45850 1.09067 2.42641 0.21738 5.35246 0.97065 4.91785 5.33327 

10 2.99862 1.3008 2.95634 0.17850 5.93860 1.14005 5.37797 5.938608 
11 3.77515 1.70111 3.56432 0.108562 6.20655 1.49582 5.81954 6.32065 

Table 4. Variations in L, Avgrr, p0, ARR, proportion of total lost, λs and Effl  
with respect to mean service rate μ considering (λ = 6, v = 0.5, p = 0.01, k = 5) 

μ L Avgrr ARR p0 AAR Proportion of  
total lost λs Effl 

5 1.46941 0.52128 0.95453 0.31618 4.65666 0.35179 3.98637 4.15665 
6 0.91633 0.48020 0.905638 0.46958 4.87588 0.30475 4.34738 4.64758 
7 0.60843 0.40015 0.734563 0.53307 5.31489 0.25717 4.79133 4.99149 
8 0.52855 0.36010 0.602341 0.58923 5.90363 0.20814 5.20362 5.40306 
9 0.46705 0.31009 0.516784 0.66502 6.13501 0.16253 5.69341 5.93501 
10 0.39831 0.26007 0.402387 0.77914 6.70342 0.11437 6.16695 6.29527 

 
From Table 3, it is clear that as the arrival rate increases, average system size, av-

erage reneging rate, ARR, AAR, the proportion of total customers lost due to baulking 
and reneging, rate at which customers reach the service system and effective arrival rate 
increase, which is quite obvious. The increase in average arrival rate means more cus-
tomers in the system and it leads to a high level of impatience. Loss of customers means 
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revenue loss for any system. Since the proportion of total customer lost increases with 
the increase in arrival rate so the system manager must appoint some additional server 
or have to increase the service rate to reduce the revenue loss. 

From Table 4, it is evident that with the increase in an average rate of service, mean 
system size, average reneging rate, average baulking rate, ARR and proportion of total 
customers lost due to impatience decreases. This means customers have to spend less 
time in the system and there will be fewer chances of getting impatient which is the 
most idealistic situation for any firm. On the other hand, the probability that the server 
is in idle condition, AAR and effective arrival rate to the system increases with the in-
crease in average service rate which is quite obvious. Therefore, we can say that the 
theoretical development in this paper is consistent with the proper functioning of the 
model. 

Table 5. Variations in L, Avgrr, p0, ARR, proportion of total lost, λs and Effl  
with respect to the average reneging rate ν considering (λ = 6, μ = 5, p = 0.01, k = 5 

ν L Avgrr ARR p0 AAR Proportion of  
total lost λs Effl 

0.5 1.46941 0.52128 0.95453 0.31618 4.65666 0.35179 3.98637 4.15665 
0.6 1.26882 0.69142 1.28472 0.37631 4.81935 0.40588 3.55576 4.47193 
0.7 0.86806 0.83084 1.78251 0.40648 5.15786 0.46041 2.95501 4.85786 
0.8 0.77325 1.38042 2.06743 0.43664 5.65852 0.50619 2.65426 5.35852 
0.9 0.66593 1.81668 2.69315 0.49680 5.95918 0.55635 2.25351 5.79186 
1.0 0.58867 2.23071 3.00683 0.51697 6.29845 0.59650 1.85277 6.05984 

Table 6. Variations in L, Avgrr, p0, ARR, the proportion of total lost, λs and Effl  
with respect to the system capacity (k) considering (λ = 6, µ = 5, υ = 0.5, p = 0.01) 

k L Avgrr ARR p0 AAR Proportion of  
total lost λs Effl 

5 1.46941 0.52128 0.95453 0.31618 4.65666 0.35179 3.98637 4.15665 
6 1.89734 0.73142 1.23481 0.30522 4.86512 0.39996 4.124701 4.51519 
7 2.63619 0.95825 1.67145 0.28073 5.03871 0.44807 4.618131 4.97871 
8 2.93841 1.15721 1.92641 0.21035 5.21269 0.49065 4.96924 5.23279 
9 3.33100 1.41023 2.35134 0.17361 5.75188 0.53955 5.247824 5.75560 
10 3.91595 1.93015 2.86492 0.11656 6.11671 0.61193 5.819543 6.23571 

 
It can be observed from Table 5 that the average reneging rate, the proportion of 

total customers lost and the probability that the system is in an empty state increase with 
the increase in average reneging rate. This is because as the average reneging rate of the 
system increases, more and more customers leave the queue without receiving service 
due to impatience. At the same time, this results in a decrease in average system size 
and the rate at which customers reach the server. 
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From Table 6, it is clear that as the system capacity increases, average system size, 
average reneging rate, ARR, AAR, the proportion of total customer lost due to baulking 
and reneging, rate at which customers reach the service system and effective arrival rate 
also increase. If we increase the capacity of the system, that means we can accommodate 
more customers and it causes a high level of impatience among the customers. Loss of 
customers means the overall loss in the business. Since the proportion of total customer 
lost increases and the idle time for the server decreases with the increase in system ca-
pacity, so the system manager must not increase the system capacity or must appoint 
some additional server or have to increase the service rate to reduce the revenue loss. 

7. Conclusion 

The analysis of a single server finite buffer Markovian queueing system with discour-
aged arrival, state-dependent baulking, and retention of reneging has been presented. 
Closed-form expressions of several traditional, as well as novel performance measures, have 
been derived. To study the change in the system corresponding to change in system param-
eters, sensitivity analysis has also been presented. A numerical example has been discussed 
to demonstrate the obtained results. A numerical example of indicative nature is meant to 
illustrate the benefits of our theoretical results in a design context. The extension of our 
result considering general distribution is a pointer to future research. 

Appendix 

A1. Derivation of Pʹ(1) under R_BOS 

Let P(s) denote the probability generating function, defined by 
0
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From (3) we have 
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From (4) we have 
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Again, multiplying both sides of the equation by sk 
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A2. Derivation of Q′(1) under R_EOS  

From equation (8) we have 
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Multiplying both sides of the equation by s1 and summing over n 
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From (10) we have 
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Again, multiplying both sides of the equation by sk 
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Adding (A4), (A5), and (A6) and proceeding like in Section (8.1), we obtain 
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