PL EN


2016 | 2 | 105-123
Article title

A theoretical approach to quantitative downside risk measurement methods

Content
Title variants
Languages of publication
EN
Abstracts
EN
Evaluating the results of the investment portfolio it is important to take into account not only the expected profitability, but also the risk. Risk measurement is based on the historical data applying various methods. The methods, that take into account the downside volatility, measures risk most effectively. The importance of these methods is emphasized by the empirical research. There are three main downside risk types: downside or asymmetric risk, tail risk, drawdown risk. The paper describes and compares the different risk measurement methodologies and criteria. Market risk measurement methods must meet four basic risk measurement axioms: positive homogeneity, subadditivity, monotonicity, transitional invariance. These axioms represent only a part of evaluating methods for tail risk and drawdown risk. Having conducted empirical studies the scientists have shown that empirical research is becoming more and more popular involving the use of a downside risk measurement methods. This popularity can be explained by the fact that based on the research results the downside risk measurement methodologies help increase the efficiency of investment portfolio.
Keywords
Year
Issue
2
Pages
105-123
Physical description
Dates
online
2016-06-30
Contributors
  • Šiauliai University
References
  • Acerbi C., Tasche D. (2002), Expected Shortfall: a natural coherent alternative to Value at Risk, “Economic Notes“, vol. 31 no. 2, pp. 379-388.
  • Acerbi C., Nordio C., Sirtori C. (2008), Expected Shortfall as a Tool for Financial Risk Management, http://arxiv.org/pdf/cond-mat/0102304v1.pdf [30.06.2016].
  • Albrecht P. (2004), Risk Measure, Encyclopedia of Actuarial Science, John Wiley & Sons, New York.
  • Ang A., Chen J., Xing Y. (2006), Downside Risk, “Review of Financial Studies“, vol. 19 no. 4, pp. 1191-1239.
  • Aniūnas P., Nedzveckas J., Krušinskas R. (2009), Variance – Covariance Risk Value Model for Currency Market, “Engineering economics“, vol. 1 no. 61, pp. 18-27.
  • Artzner P., Delbaen F., Eber J.-M., Heath D. (1999), Coherent Measures of Risk, “Mathematical Finance“, vol. 9 no. 3, pp. 203-228.
  • Bacon C. (2008), Practical Portfolio Performance, Measurement and Attribution, 2nd ed., John Wiley & Sons, Inc., New Jersey.
  • Bali T. G., Demirtas K. O., Levy H. (2009), Is There a Relation Between Downside Risk and Expected Stock Return?, “Journal of Financial and Quantitative Analysis“, vol. 44 no. 4, pp. 883-909.
  • Bawa V. S. (1975), Optimal rules for ordering uncertain prospects, “Journal of Financial Economics“, vol. 2 no. 1, pp. 95-121.
  • Bawa V. S., Lindenberg E. B. (1977), Capital Market Equilibrium in a Mean-Lower Partial Moment Framework, “Journal of Financial Economics“, vol. 5 no. 2, pp. 189-200.
  • Benson R., Shapiro R. K., Smith D., Thomas R. (2013), A Comparison of Tail Risk Protection Strategies in the U.S. Market, Alternative Investment Analyst Review, pp. 32-47.
  • Bhansali V., Davis J. M. (2010), Offensive Risk Management: Can Tail Risk Hedging Be Profitable?, PIMCO Working Paper, Februrary, pp. 20.
  • Bollerslev T., Todorov V. (2011), Tails, Fears, and Risk Premia, “The Journal of Finance“, vol. LXVI no. 6, pp. 2165-2211.
  • Burke G. (1994), A sharper Sharpe ratio. The Computerized Trader, “Futures Magazine“, March, p. 56.
  • Central Bank of the Republic of Lithuania (2002), Nutarimas dėl vidinių rinkos rizikos vertinimo modelių taikymo (Resolution on the aim of the internal market risk measurement model) https://www.lb.lt/valdyb_nutar_151_1 [30.06.2016].
  • Chambers D., Lun Q. (2011). Value at Risk Estimation: A Review and Extension, Hawaii University International Conferences 2011 Math and Engineering, Honolulu.
  • Chekhlov A., Uryasev S., Zabarankin M. (2005), Drawdown measure in portfolio optimization, “International Journal of Theoretical and Applied Finance“, vol. 8 no. 1, pp. 13-58.
  • Cherny V., Obloj J. (2013), Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model, “Finance and Stochastics“, vol. 17 no. 4, pp 771-800.
  • Coleman T. S. (2011), A Practical Guide to Risk Management, The Research Foundation of CFA Institute, Charlottesville.
  • Cumming D., Haß L. H., Schweizer D. (2014), Strategic Asset Allocation and the Role of Alternative Investments, “European Financial Management“, vol. 20 no. 3, pp. 521-547.
  • Dobrynskaya V. V. (2014), Downside Risk in Stock and Currency Markets, PhD thesis, London.
  • Dzikevičius A. (2005), Valiutinių pozicijų portfelio rinkos rizikos vertinimo metodų lyginamoji analizė (A comparative analysis of market risk measurement approaches of FX portfolio), Tiltai, no. 2, pp. 1-13.
  • Estrada J. (2003), Mean-Semivariance Behavior: A Note, “Finance Letters“, no. 1, pp. 9-14.
  • Estrada J. (2004), Mean-Semivariance Behaviour: An Alternative Behavioural Model, “Journal of Emerging Market Finance“, vol. 3 no. 3, pp. 231-248.
  • Estrada J. (2007), Mean-semivariance behavior: Downside risk and capital asset pricing, “International Review of Economics and Finance“, no. 16, pp. 169-185.
  • Eling M., Schuhmacher F. (2006), Does the choice of performance measure influence the evaluation of hedge funds?, “Working papers on Risk Management and Insurance“, no. 29.
  • Garbanovas G. (2010), Banko vertės ir rizikų portfelio sąveika ir valdymas (Bank value and risk‘s portfolio interdependence and management), Doctoral dissertation, Technika, Vilnius.
  • Ishibe M., Kakuta Y., Sakamaki S. (2012), Premium for Upside Risk and Downside Risk: decomposition of volatility effect, “Securities Analysts Journal“, p. 12.
  • Young T. W. (1991), Calmar ratio: A smoother tool, “Futures“, vol. 20 no 1, p. 40.
  • Jaaman S. H., Lam W. H., Isa Z. (2011), Different downside risk approaches in portfolio optimisation, “Journal of Quality Measurement and Analysis“, vol. 7 no. 1, pp. 77-84.
  • Jean W. H. (1975), Comparison of Moment and Stochastic Dominance Ranking Methods, “Journal of Financial and Quantitative Analysis“, vol. 10 no. 1, pp. 151-161.
  • Jorion P. (2007), Financial Risk Manager Handbook, 4th ed., John Wiley & Sons, Inc., New Jersey.
  • Kabašinskas A. (2007), Finansų rinkų statistinė analizė ir statistinio modeliavimo metodai (Statistical analysis of financial markets and methods of statistical modeling), Doctoral dissertation, Vytautas Magnus University, Vilnius.
  • Kahneman D., Tversky A. (1979), Prospect Theory: An Analysis of Decision under Risk, “Econometrica“, vol. 47, pp. 263-291.
  • Kaplan P. D., Knowles J. A. (2004), Kappa: A Generalized Downside Risk-Adjusted Performance Measure, Working Paper, Miscellaneous publication, Morningstar Associates and York Hedge Fund Strategies.
  • Keating C., Shadwick W. F. (2002) A universal performance measure, “Journal of Performance Measurement“, vol. 6 no. 3, pp. 59–84.
  • Kelly B., Jiang H. (2014), Tail Risk and Asset Prices, “The Review of Financial Studies“, vol. 27 no. 10, pp. 1-31.
  • Kolbadi P., Ahmadinia H. (2011), Examining Sharpe, Sortino and Sterling Ratios in Portfolio Management, Evidence from Tehran Stock Exchange, “International Journal of Business and Management“, vol. 6 no. 4, pp. 222-236.
  • Leipus R., Norvaiša R. (2004), Finansų rinkos teorijos taikymas (Application of financial market theories), “Pinigų studija“, no. 1, pp. 31-53.
  • Markowitz H. (1952), Portfolio selection, “The Journal of Finance“, vol. 7 no. 1, pp. 77-91.
  • Markowitz H. (1959), Portfolio Selection Efficient Diversification of Investment, John Wilei & Sons, Inc., New York.
  • Martin P. G., McCann B. B. (1992), The Investor‘s Guide to Fidelity Funds: Winning Strategies for Mutual Funds Investing, 2nd ed., Venture Catalyst, Redmond, Washington.
  • Mendes B. V. M., Leal R. P. C. (2003), Maximum Drawdown: Models and Application, “Journal Of Alternative Investments” vol. 7 no. 4, p. 19.
  • Page S. (2013), Risk Management beyond Asset Class Diversification, Presentation from the Global Investment Risk Symposium held in Washington, DC, 7-8 March.
  • Panjer H. H. (2002), Measurement of Risk, Solvency Requirements and Allocation of Capital Within Financial Conglomerates, 27th International Congress of Actuaries, Cancun.
  • Post T., Vliet P. (2004), Conditional Downside Risk and the CAPM, ERIM Report Series Research in Management.
  • Rockafellar T. R., Uryasev S. (2000), Optimization of Conditional Value-at-Risk, “Journal of Risk“, vol. 2 no. 3, pp. 21-41.
  • Roy A. D. (1952), Safety First and the Holding of Assets, “Econometrica“, vol. 20 no. 3, pp. 431-449.
  • Shalit H. (2014), Portfolio Risk Management Using the Lorenz Curve, “The Journal of Portfolio Management“, vol. 40 no. 3, pp. 152-159.
  • Sing T. F., Ong S. E. (2000), Asset Allocation in a Downside Risk Framework, “Journal of Real Estate Portfolio Management“, vol. 6 no. 3, pp. 213-223.
  • Sortino F. A., Price L. N. (1994), Performance Measurement in a Downside Risk Framework, “Journal of Investing“, vol. 3 no. 3, pp. 59-64.
  • Sortino F. A., Van der Meer R. (1991), Downside Risk, “Journal of Portfolio Management“, vol. 18, pp. 27-31.
  • Sourd V. L. (2007), Performance Measurement for Traditional Investment Literature Survey, EDHEC Risk and Asset Management Research Centre.
  • Szego G. (2002), Measures of Risk, “Journal of Banking & Finance“, vol. 26, pp. 1253-1272.
  • Unser M. (2000), Lower partial moments as measures of perceived risk: An experimental study, “Journal of Economic Psychology“, vol. 21 no. 3, pp. 253-280.
  • Watanabe Y. (2007), Is Sharpe Ratio Still Effective?, “The Journal of Performance Measurement“, vol. 11 no. 1.
  • Xiong J. X., Idzorek T. M. (2011), The Impact of Skewness and Fat Tails on the Asset Allocation Decision, “Financial Analyst Journal“, vol. 67 no. 2, pp. 23-35.
  • Xiong J. X., Idzorek T. M., Ibbotson R. G. (2014), Volatility versus Tail Risk: Which One Is Compensated in Equity Funds?, “Journal of Portfolio Management“, vol. 40 no. 2, pp. 112-121.
  • Zabarankin M., Pavlikov K., Uryasev S. (2014), Capital Asset Pricing Model (CAPM) with drawdown measure, “European Journal of Operational Research“, no. 234, pp. 508-517.
Document Type
Publication order reference
Identifiers
ISSN
2353 - 9119
YADDA identifier
bwmeta1.element.desklight-c70348fe-c1ef-44c0-ba78-269031c130f8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.