PL EN


2019 | 2 (52) | 9-18
Article title

The conjoint R package as a tool for measuring stated preferences

Content
Title variants
PL
Pakiet conjoint programu R jako narzędzie pomiaru preferencji wyrażonych
Languages of publication
EN
Abstracts
EN
Two groups of research methods are used in the decompositional approach to stated preferences – conjoint analysis methods and discrete choice methods. The most commonly applied traditional conjoint analysis method is an example of the first group. Because of its computational complexity, its practical application requires using appropriate commercial or non-commercial computer software. The purpose of the article is to present the traditional conjoint analysis method and discuss its implementation in the form of the conjoint package for R program, which with CRAN packages is currently one of the most important non-commercial computing environments for statistical data analysis. In addition to the detailed characteristics of the individual conjoint R package functions, the paper also presents the application of the conjoint package in marketing research, along with the interpretation of the selected results, based on the example of measuring and analysing stated preferences of beer consumers.
PL
W podejściu dekompozycyjnym wykorzystuje się dwie grupy metod badawczych – metody conjoint analysis oraz metody wyborów dyskretnych. Przykładem pierwszej grupy jest stosowana z powodzeniem do dnia dzisiejszego tradycyjna metoda conjoint analysis. Ze względu na jej złożoność obliczeniową jej praktyczne zastosowanie oznacza wykorzystanie odpowiedniego komercyjnego lub niekomercyjnego oprogramowania komputerowego. W artykule omówiono tradycyjną metodę conjoint analysis oraz zaprezentowano implementację tej metody w postaci modułu conjoint programu R, który wraz z innymi pakietami oraz programem R jest obecnie jednym z najważniejszych, niekomercyjnych środowisk obliczeniowych przeznaczonych do analizy statystyczno-ekonometrycznej. Oprócz szczegółowej charakterystyki poszczególnych funkcji pakietu conjoint, w artykule zapre- zentowane zostało także zastosowanie pakietu w badaniach marketingowych wraz z interpre- tacją wybranych wyników na przykładzie pomiaru i analizy preferencji wyrażonych konsu- mentów piwa.
Year
Issue
Pages
9-18
Physical description
References
  • Bartłomowicz, T., and Bąk, A. (2018a). Conjoint R – Wikipedia, wolna encyklopedia. Retrieved from: https://pl.wikipedia.org/wiki/Conjoint_R
  • Bartłomowicz, T., and Bąk, A. (2018b). Conjoint R. Retrieved from: http://keii.ue.wroc.pl/conjoint/ Conjoint_R.html
  • Bąk, A. (2004). Dekompozycyjne metody pomiaru preferencji w badaniach marketingowych. Research Papers of the University of Economics in Wrocław, (1013).
  • Bąk, A. (2013). Mikroekonometryczne metody badania preferencji konsumentów z wykorzystaniem programu R. Warsaw: C.H. Beck Publishers.
  • Bąk, A., and Bartłomowicz, T. (2012). Conjoint analysis method and its implementation in conjoint R package. In J. Pociecha, R. Decker, Data Analysis Methods and Its Applications (pp. 239-248). C.H. Beck Publishers, Warsaw.
  • Bąk, A., and Bartłomowicz, T. (2018). Conjoint analysis – conjoint package. Retrieved from https://cran.r-project.org/package=conjoint
  • Conjoint.ly. (2020). Conjoint.ly. Tools and support for product and pricing research. Conjoint.ly. Retrieved from: https://conjoint.online
  • Coombs, C. H., Dawes, R. M., Tversky, A. (1977). Wprowadzenie do psychologii matematycznej. Warsaw: Polish Scientific Publishers.
  • Fenwick, I. (1978). A user’s guide to conjoint measurement in marketing. European Journal of Marketing, 12(2), 203-211.
  • Green P. E., and Wind Y. (1975). New way to measure consumers’ judgments. Harvard Business Review, 53 (July-August), 107-117.
  • Green, P. E., and Srinivasan, V. (1978). Conjoint analysis in consumer research: issues and outlook. Journal of Consumer Research, (5), 103-123.
  • Green, P. E., and Srinivasan, V. (1990). Conjoint analysis in marketing: new developments with implications for research and practice. Journal of Marketing, (54), 3-19.
  • Green, P. E., Krieger, A. M., and Wind, Y. (2001). Thirty years of conjoint analysis: reflections and prospects. Retrieved from http://www-marketing.wharton.upenn.edu/ideas/pdf
  • Green, P. E., Wind, Y. (1973). Multiattribute decisions in marketing. A measurement approach. Hinsdale, Illinois Dryden Press.
  • Großmann, H., Holling, H., and Schwabe, R. (2002), Advances in optimum experimental design for conjoint analysis and discrete choice models. In Franses P.H., Montgomery A.L. (ed.), Econometric Models in Marketing, vol. 16 (pp. 93-117). Oxford: Elsevier Science.
  • Gustafsson A., Herrmann A., and Huber F. (ed.). (2007), Conjoint measurement. Methods and applications. 4th Edition, Springer-Verlag, Berlin-Heidelberg-New York.
  • Hair J. F., Anderson R. E., Tatham R. L., and Black W. C. (1995). Multivariate data analysis with readings, Prentice-Hall, Englewood Cliffs.
  • Hooley, G. J., and Lynch, J. E. (1981). Modelling the student university choice process through the use of conjoint measurement techniques. European Research, (4), 158-170.
  • Huber, J., and Zwerina, K. (1996). The importance of utility balance in efficient choice designs. Journal of Marketing Research, (33), 307-317.
  • Kendall, M. G., and Buckland, W. R. (1986). Słownik terminów statystycznych. Warsaw: Polish Economic Publishers,.
  • Kruskal, J. B. (1964), Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 2(91), 1-27.
  • Kruskal, J. B. (1964a). Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29(2), 115-129.
  • Kruskal, J. B. (1965). Analysis of factorial experiments by estimating monotone transformations of the data. Journal of the Royal Statistical Society, 27(2), 251-263.
  • Kuhfeld, W. F. (1997). Efficient experimental design using computerized searches. Retrieved from: https://www.sawtoothsoftware.com/download/techpap/1997Proceedings.pdf
  • Ott, L. (1984). An introduction to statistical methods and data analysis (2nd Edition). Boston: PWS Publishing Co.
  • R Core Team. (2020). R: a language and environment for statistical computing. R foundation for statistical computing. Vienna. Retrieved from https://www.R-project.org/
  • Rasch, D., and Herrendörfer, G. (1991). Statystyczne planowanie doświadczeń. Warsaw: Polish Scientific Publishers.
  • RStudio Team. (2018). RStudio: integrated development for R. Boston: MA: RStudio. Inc. Retrieved from: http://www.rstudio.com/
  • SAS. (2020). Statistical analysis system. NC: SAS Institute, Cary. Retrieved from: https://www.sas.com Sawtooth Software. (2020), Sawtooth Software, Inc., Provo. Retrieved from: https://www.sawtoothsoftware. com
  • Smith, S. L. J. (1989). Tourism analysis: a handbook. Harlow: Longman Scientific & Technical.
  • Statistica. (2020). Statistica. Palo Alto, CA: TIBCO Software Inc. Retrieved from: http://statistica.io
  • Survey Analytics. (2020). Conjoint analysis free survey. Survey analytics. Retrieved from: https://www. surveyanalytics.com/conjoint-survey-free.html
  • Vriens, M. (2001). Market segmentation. Analytical developments and application guidelines. Millward Brown IntelliQuest.
  • Vriens, M., and Wittink, D. R. (1994). Conjoint analysis in marketing (maszynopis powielony [typewritten copy]).
  • Walesiak, M. (1996). Metody analizy danych marketingowych. Warsaw: Polish Scientific Publishers.
  • Walesiak, M., and Bąk, A. (2000). Conjoint analysis w badaniach marketingowych. Press Wrocław: University of Economics in Wrocław.
  • Wheeler, R. E. (2015). Package AlgDesign. Algorithmic Experimental Design. Retrieved from: https://cran.r-project.org/package=AlgDesign
  • Wilkinson, L. (1998). Conjoint analysis. In SYSTAT 8.0 (pp. 87-114). Chicago: SPSS Inc.
  • Zwerina, K. (1997). Discrete choice experiments in marketing. Heidelberg-New York: Physica-Verlag.
  • Zwerina, K., Huber, J., and Kuhfeld, W. F. (2000). A General Method for Constructing Efficient Choice Design. Retrieved from: https://faculty.fuqua.duke.edu/~jch8/bio/Papers/
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-c78faea8-1ff8-4c1d-a8b3-affd21c1b8b7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.