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FUNCTIONAL REGRESSION IN SHORT-TERM 
PREDICTION OF ECONOMIC TIME SERIES  

Daniel Kosiorowski1 

ABSTRACT 

We compare four methods of forecasting functional time series including fully 
functional regression, functional autoregression FAR(1) model, Hyndman & 
Shang principal component scores forecasting using one-dimensional time series 
method, and moving functional median. Our comparison methods involve 
simulation studies as well as analysis of empirical dataset concerning the Internet 
users behaviours for two Internet services in 2013. Our studies reveal that 
Hyndman & Shao predicting method outperforms other methods in the case of 
stationary functional time series without outliers, and the moving functional 
median induced by Frainman & Muniz depth for functional data outperforms 
other methods in the case of smooth departures from stationarity of the time 
series as well as in the case of functional time series containing outliers.  

Key words: functional data analysis, functional time series, prediction.  

1. Introduction  

A variety of economic phenomena directly leads to functional data: yield 
curves, income densities, development trajectories, price trajectories, life of a 
product, and electricity or water consumption within a day (see Kosiorowski et al. 
2014). The Functional Data Analysis (FDA) over the last two decades proved its 
usefulness in the context of decomposition of income densities or yield curves, 
analyses of huge, sparse economic datasets or analyses of ultra-high frequency 
financial time series. The FDA enables an effective statistical analysis when the 
number of variables exceeds the number of observations. Using FDA we can 
effectively analyse economic data streams, i.e., for example, perform an analysis 
of non-equally spaced observed time series, which cannot be predicted using, e.g. 
common moving average or ARIMA framework, by analysing or predicting a 
whole future trajectory of a stream rather than iteratively predict single 
observations. 
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Using a functional regression where both the predictor as well as the response 
are functions, we can express relations between complex economic phenomena 
without dividing them into parts. Recently proposed models for functional time 
series give us a hope for overcoming the so-called curse of dimensionality related 
to nonparametric analysis of huge economic data sets (see Horvath and Kokoszka, 
2012). From other perspective, functional medians defined within the data depth 
concept for functional objects may have useful applications in the context of 
robust time series analysis – in the case of existence paths of outliers in the data. 

The analysis of functional time series (FTS) was considered, among others, in 
the literature in the contexts of: breast cancer mortality rate modelling and 
forecasting, call volume forecasting, climate forecasting, demographical 
modelling and forecasting, electricity demand forecasting, credit card transaction 
and Eurodollar futures (see Ferraty, 2011 for an overview), yield curves and the 
Internet users behaviours forecasting (Kosiorowski et al. 2014b), extraction of 
information from huge economic databases (Kosiorowski et al. 2014a). 

The FTS undoubtedly brings up conceptually new areas of economic research 
and provides new methodology for applications. It is not clear, however, which 
approaches proposed in the FTS literature up to now are the most promising in the 
context of FTS prediction. The main aim of this paper is to compare main 
approaches for FTS prediction using real data set related to day and night Internet 
users behaviours in 2013. Our paper refers to similar simulation studies of the 
selected FTS prediction methods presented in Didieriksen et al. (2011) and Besse 
et al. (2000). Additionally, we considered Hyndeman and Shang (2010) 
nonparametric FTS prediction and moving Frainman & Muniz functional median 
forecasting methods.  

The rest of the paper is organized as follows. In Section 2 we briefly describe 
selected approaches for FTS prediction. In Section 3 we compare the approaches 
using empirical examples. We conclude with Section 4 which discusses 
advantages and disadvantages of the approaches presented in Section 2. 

2. Functional time series prediction 

2.1. Preliminaries – functional time series 

Functions considered within the FDA are usually elements of a certain 
separable Hilbert space H  with certain inner product ,⋅ ⋅  which generates a 

norm ⋅ . A typical example is a space ( )2 2
0[ , ]LL L t t=  - a set of measurable 

real-valued functions x  defined on 0[ , ]Lt t satisfying
0

2 ( )
Lt

t

x t dt < ∞∫  . The space 

2L  is a separable Hilbert space with an inner product , ( ) ( )x y x t y t dt= ∫ . We 
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usually treat the random curve { }0( ), [ , ]LX X t t t t= ∈  as a random element of 
2L  equipped with the Borelσ  algebra. Recently, within a nonparametric FDA, 

authors have successfully used certain wider functional spaces, i.e. for example, 
Sobolev spaces (Ferraty and Vieu, 2006). 

In order to apply FDA into the economic researches, first we have to 
transform discrete observations into functional objects using smoothing, kernel 
methods or orthogonal systems representations. Then we can calculate and 
interpret functional analogues of basic descriptive measures such as mean, 
variance and covariance (for details see Ramsay and Silvermann, 2005; Górecki 
and Krzyśko, 2012).  

For the iid observations 1 2, ,..., NX X X  in 2L  with the same distribution as 
X , which is assumed to be square integrable we can define the following 

descriptive characteristics: 
( ) [ ( )]t E X tµ = ,  mean function,             (1) 

[ ]( , ) ( ( ) ( ))( ( ) ( ))c t s E X t t X s sµ µ= − − , covariancefunction,   (2) 

, ( )C E X Xµ µ = − ⋅ −  , covariance operator        (3) 

and correspondingly their sample estimators 
1

1

ˆ ( ) ( ),
N

i
i

t N X tµ −

=

= ∑
           

(4) 

1

1

ˆ ˆ ˆ( , ) ( ( ) ( ))( ( ) ( )),
N

i i
i

c t s N X t t X s tµ µ−

=

= − −∑
      

(5) 

1

1

ˆ ˆ ˆ( ) , ( ),
N

i i
i

C x N x x xµ µ−

=

= − −∑ 2 ,x L∈       (6) 

It is worth noting that Ĉ  maps 2L  into a finite dimensional subspace spanned 
by 1 2, ,..., NX X X . 

A functional analogue of the principal component analysis plays a central 
role in the FTS. For a covariance operator C , the eigenfunctions jv  and the 

eigenvalues jλ  are defined by ,j j jCv vλ= so if jv  is an eigenfunction, then so is 

jav – for any nonzero  scalar a . The jv  are typically normalized so that 1jv = . 

In a sample case we define the estimated eigenfunctions ˆ jv  and eigenvalues 
by 

 
ˆˆ ˆ ˆ( , ) ( ) ( )j j jc t s v s ds v tλ=∫ , 1, 2,...,j N= ,                                   (7) 

where ˆ( , )c t s  denotes estimated covariance function (see Górecki and Krzyśko, 
2012). 
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Let ( )ty x  denote a function, such as monthly income for the continuous age 
variable x  in year t . We assume that there is an underlying smooth function 

( )tf x which is observed with an error at discretized grid points of x . A special 

case of functional time series { }( )t t
y x

∈
 is when the continuous variable x  is 

also a time variable. For example, let { , [1, ]}wZ w N∈  be a seasonal time series 
which has been observed at N equispaced time points. We divide the observed 
time series into n  trajectories, and then consider each trajectory of length p  as a 
curve rather than p  distinct data points. The functional time series is then given 
by 

( ) { , ( ( 1), ]}t wy x Z w p t pt= ∈ −  , 1, 2,...,t n= .                            (8) 

The problem of interest is to forecast ( )n hy x+ , where h  denotes forecast 
horizon. 

In the context of FTS prediction, several methods have been considered in the 
literature up to now. Ramsay and Silverman (2005) and Kokoszka (2007) studied 
several functional linear models. Theoretical background related to the prediction 
using functional autoregressive processes can be found in Bosq (2000). 
Functional kernel prediction was considered in Ferraty and Vieu (2006), Ferraty 
(2011). An application of a functional principal component regression to FTS 
prediction can be found in Shang and Hyndeman (2011). 

For evaluating prediction quality of main approaches for FTS prediction in the 
case of our empirical data set related to the Internet users of certain services 
analysis, we refer to frameworks presented in two finite sample studies: Besse et 
al. (2000) and Didericksen et al. (2011). Within simulation studies, these authors 
have studied predictions at time n  errors nE and nR , 1 n N< < , defined in the 
following way: 

( )
0

2ˆ( ) ( )L

n n n

t

t
E X t X t dt= −∫ ,                                    (9) 

0

ˆ( ) ( )
L

n n n

t

t

R X t X t dt= −∫ ,       (10) 

for several N=50, 100, 200, several processes models and innovation processes. 

2.2. Prediction using fully functional model 

In the simple linear regression we consider observations from the following 
point of view 

0 1i i iY xβ β ε= + + , 1, 2,...,i N= ,           (11) 

where all random variables iY  as well the regressors ix are scalars. 
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In the case of a functional linear model, predictors, responses as well as 
analogues of the coefficients 0β  and 1β  may be curves and have to be 
appropriately defined. 

The fully functional model is defined as 

( ) ( , ) ( ) ( )i i iY t t s X s ds tψ ε= +∫ , 1, 2,...,i N=  ,                     (12) 

where responses iY  are curves and so are regressors iX . 

The fully functional model can alternatively be written as 

( ) ( ) ( , ) ( ),Y t X s s t ds tβ ε= +∫                                                 (13) 

where ( , ) ( , )s t t sβ ψ= , [ ]1( ) ( ),..., ( ) T
NY t Y y Y t= , [ ]1( ) ( ),..., ( ) T

NX s X s X s= , 

and [ ]1( ) ( ),..., ( ) T
Nt t tε ε ε= . 

Suppose { }, 1k kη ≥  and { }, 1l lθ ≥  are some bases which need not be 

orthonormal. Assume that the functions kη  are suitable for expanding the 

functions iX  and iθ  for expanding the iY . For estimating the kernel ( , )β ⋅ ⋅ , let 
us consider estimates of the form 

*

1 1
( , ) ( ) ( )

K L

kl k l
k l

s t b s tβ η θ
= =

=∑∑ ,      (14) 

in which K  and L  are relatively small numbers which are used as smoothing 
parameters.  

We obtain a least squares estimator by finding klb  which minimizes the 
residual sum 

2
*

1
( ) ( , ) .

N

i i
i

Y X s sβ
=

− ⋅∑ ∫
      

(15) 

Derivation of normal equations can be found in Horvath and Kokoszka 
(2012). Alternative estimators for (14) can be found in Ramsay and Silverman 
(2005), where authors used large K and L but introduced a roughness penalty on 
the estimates.  

Effective application of the model (12) relates to fulfilling an assumption that 
the conditional expectation [ ( ) | ]E Y t X  is a linear function of X . It is worth 
noting that within the functional regression setup it is possible to perform an 
analogue of regression diagnostics using functional residuals defined as  

ˆ ˆ( ) ( ) ( , ) ( ) ,i i it Y t t s X s dsε ψ= − ∫ 1,2,...,i N= ,     (16) 

and calculate an analogue of the coefficient of determination 
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[ ]
[ ]

2 ( ) |
( ) ,

( )
Var E Y t X

R t
Var Y t
  =

       
(17) 

note that since [ ] [ ]( ) | ( )Var E Y t X Var Y t  ≤  , 20 ( ) 1R t≤ ≤ . The coefficient
2 ( )R t  quantifies the degree to which the functional linear model explains the 

variability of the response curves at a fixed point t . For the global measure we 
can integrate 2 ( )R t . 

2.3. Hyndman & Shang FPC regression  

Let [ ]1 2( ) ( ), ( ),..., ( ) T
nf x f x f x=f x  denote a sample of functional data. Note 

that at a population level, a stochastic process denoted by f  can be decomposed 
into the mean function and the products of orthogonal functional principal 
components and uncorrelated principal component scores. It can be expressed as  

1
k k

k
f µ β φ

∞

=

= +∑ ,                                           (18) 

whereµ  is the unobservable population mean function, kβ  is the kth principal 
component score. Assume that we observe n  realizations of f  evaluated on a 
compact interval 0[ , ]Lx t t∈ , denoted by ( )tf x  , for 1, 2,...,t n=  . At a sample 
level, the functional principal component decomposition can be written as 

,
1

ˆ ˆ ˆ( ) ( ) ( ) ( )
K

t t k k t
k

f x f x x xβ φ ε
=

= + +∑ ,                 (19) 

where 1

1
( ) ( )

n

t
t

f x n f x−

=

= ∑  is the estimated mean function, ˆ ( )k xφ  is the kth 

estimated orthonormal eigenfunction of the empirical covariance operator 

1

1

ˆ ( ) [ ( ) ( )][ ( ) ( )]
n

t t
t

C x n f x f x f x f x−

=

= − −∑ .    (20) 

The coefficient ,t̂ kβ  is the kth principal component score for year t. It is 

given by the projection of ( ) ( )tf x f x−  in the direction of kth eigenfunction
ˆ ( )k xφ , that is, 

,
ˆ ˆ ˆ( ) ( ), ( ) [ ( ) ( )] ( )t k t k t k

x

f x f x x f x f x x dxβ φ φ= − = −∫ ,             (21) 

where ˆ ( )t xε  is the residual, and K  is the optimal number of components, which 
can be chosen for example by cross validation. 
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By conditioning on the set of smoothed functions 

[ ]1 2( ) ( ), ( ),..., ( ) T
nf x f x f x=f x  and the fixed functional principal components 

1 2
ˆ ˆ ˆ( ), ( ),..., ( )

T

KB x x xφ φ φ =    , the Hyndman and Shangh-step-ahead forecast 

of ( )n hy x+  can be obtained as 

| | ,
1

ˆ ˆˆ ( ) [ ( ) | ( ), ] ( ) ( )
K

n h n n h n h n k k
k

y x E y x f x kβ φ+ + +
=

= = +∑f x B ,    (22) 

where | ,
ˆ

n h n kβ +  denotes the h-step-ahead forecast of ,n h kβ +  using univariate time 
series forecasting methods (i.e., for example, ARIMA, linear exponential 
smoothing). 

Note: because of orthogonality, the forecast variance can be approximated by 
the sum of component variances. 

2.4. Moving functional median 

For one dimensional sample 1 2{ , ,..., }N
NX X X X= and empirical 

cumulative density function (ecdf) { }1

1
( )

N

N i
n

F x N I X x−

=

= ≤∑  we can define the 

halfspace depth of iX as 

{ }( ) min ( ),1 ( )N i N i N iHD x F x F x= − .                              (23) 

We can obtain another one-dimensional depth using the following formula  

( ) 1 1/ 2 ( )N i N iD x F x= − − .                                       (24) 

For N functions{ }0( ), [ , ]i LX t t t t∈  and { }1
,

1
( ) ( )

N

N t i
n

F x N I X t x−

=

= ≤∑ we 

can define a functional depth by integrating one of the univariate depth (see Zuo 
and Serfling, 2000 or Kosiorowski, 2012 for a detailed introduction to the data 
depth concept). 

Frainman and Muniz (2001) proposed to calculate the depth of the curve as 

0

,( | ) 1 1/ 2 ( ( ))
Lt

n
N i N t i

t

FD X X F X t dt = − − ∫ .    (25) 

Frainman and Muniz median is defined as 

( ) arg max ( | )n n
FM i

i
MED X FD X X= .      (26) 
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We can predict next observations by means of the following formula  

1 ,
ˆ ( ) ( )n FM n kX t MED W+ = ,         (27) 

where ,n kW  denotes a moving window of length k  ending at moment n , i.e., 

, 1{ ( ),..., ( )}n k n k nW X t X t− += . 

3. Empirical example 

In order to check properties of the selected method of forecasting FTS we 
considered an empirical example related to behaviours of the Internet users of two 
services in 2012 and 2013. The services were considered with respect to the 
number of unique users and number of page views during an hour. Fig. 1 presents 
raw data for the year 2013. Fig. 2 presents the main idea of obtaining functional 
time series on the basis of a periodic one-dimensional time series (in the 
considered series the period equals 24 hours). Fig. 3 – 6 present obtained 
functional observations for the corresponding number of users in the first service, 
the number of users in the second service, the numbers of page views in the first 
service and the number of page views in the second service. Additionally, we 
added corresponding functional means and Frainman & Muniz functional 
medians to the Fig. 3 – 6.  

We considered a fully functional model, Hyndman and Shang principal 
component scores forecasting method, Ferraty and View (2006) functional kernel 
regression, functional autoregressive FAR(1) model described by Horvath and 
Kokoszka (2012) and estimated by their improved estimated kernel method and 
using moving Frainman and Muniz median. All calculations were conducted 
using fda (Ramsay et al., 2009), ftsa (Shang, 2013), fda.usc (Febrero-Bande and 
Oviedo de la Fuente, 2012) and DepthProc (Kosiorowski and Zawadzki, 2014). 
Below we present selected outputs for the methods which performed best within 
our empirical analysis. In all the situations we used 7–9 spline basis systems for 
transforming discrete data to the functional objects. 

 
Figure 1. The behaviour of Internet  
              users of two services in 2013 

Figure 2. An idea of transformation of  
               the data from univariate to 
               functional time series 
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Figure 3. Functional data – number of 
unique users during 24 hours 
in service 1 

Figure 4. Functional data – number of 
unique users during 24 hours 
in service 2 

 
Fig. 7 presents the results of a functional principal component analysis for 

functional data related to the number of users in the first considered service. We 
can see there the first two principal component functions and biplots for the 
observations. It is easy to propose an interpretation according to which the first 
component relates to using the service at work whereas the second component 
relates to using the Internet at home. Fig. 7 – 11 present the functional regression 
method proposed by Hyndman and Shang applied to the  corresponding number 
of users in the first service, the number of users in the second service, the 
numbers of page views in the first service and the number of page views in 
the second service. Each time we used three basis functions (upper panel) and 
calculated principal component scores (down panel).   

 
Figure 5. Functional data – number of 

page views during 24 hours 
in service 1 

Figure 6. Functional data – number of 
page views during 24 hours 
in service 2 
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Figure 7. Functional principal components for number of unique users in  
                 service 1 in 2013 
 
 
 

 
 

Figure 8. Hyndman & Shang functional PC scores method for number of users in 
service 1. Three basis function explaining 47%, 18% and 12% 
variability correspondingly 
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Figure 9. Hyndman & Shang functional PC scores method for number of users in 

service 2. Three basis function explaining 62%, 15% and 7% variability 
correspondingly 

 
Figure 10. Hyndman & Shang functional PC scores method for number of views 

in service 1. Three basis function explaining 42%, 20% and 12% 
variability correspondingly 

 
Figure 11. Hyndman & Shang functional PC scores method for number of views 

in service 2. Three basis function explaining 50%, 20% and 10% 
variability correspondingly 
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Fig. 12 – 13 present predictions for the considered examples using Hyndman 
and Shao method and ARIMA and linear exponential smoothing (ETS) for one-
dimensional time series of principal component scores (see Hyndman et al., 
2008). Fig. 14 – 15 present observed and predicted values of the number of users 
in the service 1 and the number of views in the service 1 using moving Frainman 
and Muniz median calculated from windows consisting of 50 functional 
observations. Fig. 16 presents observed and predicted values of the number of 
users in the service 1 calculated using fully linear regression model. Fig. 17 
presents residuals in this regression model and Fig. 18 – 19 present an estimated 
coefficient function for this regression model. 

 
 

 
 

Figure 12. FTS prediction of number of 
users in the Internet services 
using Hyndman and Shao 
FTSA method 

Figure 13. FTS prediction of number 
of page views in the 
Internet services using 
Hyndman and Shao FTSA 
method 

 
 
 

 
Figure 14. FTS prediction of number of 

users in the Internet service 
1 using moving Frainman & 
Muniz median 

Figure 15. FTS prediction of number 
of views in the Internet 
service 1 using moving 
Frainman & Muniz median 
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Figure 16. Prediction of number of users 

in the Internet service 1 using 
full regression model 

Figure 17. Prediction of number of 
users in the Internet 
service 1 using full 
regression model – 
functional residuals 

 
 

 
 
Figure 18. Contour plot:  prediction of 

number of users in the 
Internet service 1 using full 
regression model – estimated 
regression parameters  

Figure 19. Perspective plot: – 
prediction of number of 
users in the Internet 
service 1 using full 
regression model – 
estimated regression 
parameters 

 
For comparing the methods we divided the data set into two parts of equal 

sizes. We estimated prediction methods parameters using the first part of the data 
and tested them using the second part of the data. For testing the methods we used 
forecast accuracy measures proposed in Didieriksen et al. (2011) defined by 
formulas (9) and (10). According to our results the Hyndman and Shang method 
performed best, the moving Frainman and Muniz median performed the second 
best and the fully linear model was third. Surprisingly, the FAR(1) method as well 
as the kernel functional regression performed relatively poor in the case of our 
data set. This finding stays in a contrary to findings of Didieriksen et al. (2011), 
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where the simulation study was conducted. In the case of our data set, prediction 
effectiveness of Hyndman and Shang method (100%) in comparison to the 
moving Frainman and Muniz median and fully linear model was correspondingly 
as 100% to 91% to 87% in the case of the number of users prediction and as 
100% to 99% to 96% in the case of page views prediction. In the case of 
simulation studies with data simulated from simple nonstationary models (based 
on models from Didieriksen et al. (2011) for which we changed the mean function 
and the covariance function) – Frainman and Muniz median performed best.  

Additionally, Hyndman and Shang method exhibits the best properties in the 
context of economic interpretations. The estimated basis functions in a clear way 
decompose patterns of the Internet behaviour of users. We can easily notice 
components related to the Internet usage at work as well as the usage at home. 
The principal component scores time series show importance of the components 
within the considered period and may be effectively interpreted in a reference to 
certain political or social events. The eigenvalues corresponding to the 
eigenfunctions show importance of the particular components for the considered 
Internet service. We obtained the best predictions using linear exponential 
smoothing prediction for one-dimensional principal component scores. 

In the case of abrupt changes of the data generating mechanism we 
recommend using moving Frainman and Muniz median which easily adapt the 
prediction device. It is easy to notice that methods which are based on estimated 
principal component functions brake down when the covariance operator changes. 

Although fully functional model provides complex family of regression 
diagnostic and goodness of fit measures, its predictive power in the case of our 
example was below our expectations. Inspection of estimated coefficient function 
(Fig. 18 – 19) shows relative constant, as to the time arguments t and s, 
dependency of 24 hour activity of the Internet users. 

For all the considered methods, it is possible to calculate the prediction 
confidence bands. In this context, prediction confidence bands provided by 
Hyndman and Shang approach based on prediction bands for (uncorrelated) one-
dimensional time series prediction seem to be the most informative.  

4. Conclusions 

The forecasting quality of functional autoregression, fully functional 
regression and Hyndman & Shang method strongly depend on the stationarity of 
the underlying functional time series, the choice of a basis system, smoothness of 
the considered functions, the PCA algorithm used. For the considered empirical 
example, in the context of prediction as well as explanation of the considered 
phenomenon Hyndman & Shang method performed best. 

The moving Frainman and Muniz functional median performed best in the 
case of simulated processes containing additive outliers. Conceptually simple, the 
moving functional median seems to be the most promising in the context of 
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nonstationary functional time series analysis. The nonstationarity issues relate to 
our current and future studies. 
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