PL EN


Journal
2017 | 1(2017) | 67–84
Article title

Przegląd badań nad związkami zdolności przestrzennych z kompetencjami z nauk ścisłych uczniów i studentów

Title variants
EN
An overview of research testing relationships between spatial abilities of pupils’ and students’ competencies of exact sciences
Languages of publication
PL
Abstracts
PL
Zdolności przestrzenne są jednymi z najsilniejszych determinant wyników w naukach ścisłych. Celem artykułu jest przedstawienie i usystematyzowanie najnowszych wyników badań na temat związków między poziomem zdolności przestrzennych a wynikami z nauk ścisłych. W pierwszej części artykułu zdefiniowano rodzaje zdolności przestrzennych, następnie przedstawiono ich uwarunkowania. W kolejnych częściach omówiono wyniki badań pokazujące związki między poziomem zdolności przestrzennych a kompetencjami z nauk ścisłych. Artykuł kończy się przedstawieniem sprawdzonych empirycznie możliwości rozwijania poziomu zdolności przestrzennych u uczniów. Opisane badań pokazują, jak poprzez rozwój zdolności przestrzennych można poprawić wyniki uczniów w naukach ścisłych.
EN
Spatial abilities are one of the strongest determinants of achievement in the exact sciences. The aim of the article is to present and systematise the most recent research on the links between the level of spatial abilities and performance in science. In the first part of the article, we define the types of spatial abilities. Then we present the determinants of spatial abilities. In the following parts of the article, we discuss the results of the research showing the relationship between the level of spatial abilities and competences in the exact sciences. At the end of the article, we present empirically verified methods for developing spatial abilities among students. The results of the studies described in the article show how to improve the achievements of students in the exact sciences through the development of spatial abilities.
Journal
Year
Issue
Pages
67–84
Physical description
Dates
published
2017-03-31
Contributors
  • Instytut Psychologii, Uniwersytet im. Adama Mickiewicza
  • Instytut Psychologii, Uniwersytet im. Adama Mickiewicza
author
  • Instytut Psychologii, Uniwersytet im. Adama Mickiewicza
  • Instytut Psychologii, Uniwersytet im. Adama Mickiewicza
References
  • Anders, S. M. van i Hampson, E. (2005). Testing the prenatal androgen hypothesis: measuring digit ratios, sexual orientation, and spatial abilities in adults. Hormones and Behavior, 47(1), 92–98.
  • Baddeley, A. (2012). Working memory: theories, models, and controversies. Annual Review of Psychology, 63, 1–29.
  • Baenninger, M. i Newcombe, N. (1989). The role of experience in spatial test performance: a meta-analysis. Sex Roles, 20(5), 327–344.
  • Baron-Cohen, S. (2005). The essential difference: the male and female brain. Phi Kappa Phi Forum, 85(1), 23–26.
  • Bednarek, H. (2004). Zróżnicowanie funkcji wzrokowo-przestrzennych u kierowców ze względu na płeć. Acta Universitatis Lodziensis. Folia Psychologica, 8, 147–156.
  • Bednarek, H. i Olszewska, J. (2004). Sprawność przestrzennych operacji umysłowych a poprawność wnioskowania dedukcyjnego. Roczniki Psychologiczne, 7(2), 63–79.
  • Berenbaum, S. A., Korman Bryk, K. L. i Beltz, A. M. (2012). Early androgen effects on spatial and mechanical abilities: evidence from congenital adrenal hyperplasia. Behavioral Neuroscience, 126(1), 86–96.
  • Black, A. A. (2005). Spatial ability and earth science conceptual understanding. Journal of Geoscience Education, 53(4), 402–414.
  • Boles, D. B. (1980). X-linkage of spatial ability: a critical review. Child Development, 51(3), 625–635.
  • Carroll, J. B. (1993). Human cognitive abilities: a survey of factor-analytic studies. Cambridge: Cambridge University Press.
  • Carter, C. S., Larussa, M. A. i Bodner, G. M. (1987). A study of two measures of spatial ability as predictors of success in different levels of general chemistry. Journal of Research in Science Teaching, 24(7), 645–657.
  • Cathcart, W. G. (1990). Effects of Logo instruction on cognitive style. Journal of Educational Computing Research, 6(2), 231–242.
  • Chatterjee, A. (2008). The neural organization of spatial thought and language. Seminars in Speech and Language, 29(3), 226–238.
  • Cherney, I. i Voyer, D. (2010). Development of a Spatial Activity Questionnaire I: items identification. Sex Roles, 62(1), 89–99.
  • Ciarkowska, W. (2003). Różnice między kobietami i mężczyznami w zdolnościach przestrzennych. Kosmos, 52(1), 49–57.
  • Contero, M., Naya, F., Company, P. i Saorín, J. L. (2007). Learning support tools for developing spatial abilities in engineering design. International Journal of Engineering Education, 22(3), 470–477.
  • De Smedt, B., Janssen, R., Bouwens, K., Verschaffel, L., Boets, B. i Ghesquière, P. (2009). Working memory and individual differences in mathematics achievement: a longitudinal study from first to second grade. Journal of Experimental Child Psychology, 103(2), 186–201.
  • Doyle, R. A., Voyer, D. i Cherney, I. D. (2012). The relation between childhood spatial activities and spatial abilities in adulthood. Journal of Applied Developmental Psychology, 33(2), 112–120.
  • Drążkowski, D. (2013). Poznawcze uwarunkowania zagrożenia stereotypem. Referat wygłoszony podczas 8. Poznańskiego Forum Kognitywistycznego, Poznań.
  • Drążkowski, D. (2014a). Sposoby redukcji zagrożenia stereotypem w badaniu zdolności poznawczych. Referat wygłoszony podczas 9. Poznańskiego Forum Kognitywistycznego, Poznań.
  • Drążkowski, D. (2014b). Interwencje redukujące zagrożenie stereotypem w środowisku edukacyjnym. Edukacja, 128(3), 45–60.
  • Drążkowski, D. i Cierpiałkowska, L. (2013). Zależność/niezależność od pola a wsparcie społeczne w kontekście stresu. Psychologia Jakości Życia, 12(1), 29–41.
  • Drążkowski, D., Szwedo, J., Krajczewska, A., Adamczuk, A., Piątkowski, K., Jadwiżyc, M. i Rakowski, A (w druku). Women are not less field independent than men – the role of stereotype threat. International Journal of Psychology. doi: 10.1002/ijop.12238
  • Ekstrom, R. B., French, J. W., Harman, H. H. i Dermen, D. (1976). Manual for kit of factor referenced cognitive tests. Princeton: Educational Testing Service.
  • Feng, J., Spence, I. i Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18(10), 850–855.
  • Friso-van den Bos, I., Ven, S. H. van der, Kroesbergen, E. H. i Luit, J. E. van (2013). Working memory and mathematics in primary school children: a meta-analysis. Educational Research Review, 10, 29–44.
  • Geiser, C., Lehmann, W. i Eid, M. (2006). Separating “rotators” from “non-rotators” in the Mental Rotations Test: a multigroup latent class analysis. Multivariate Behavioral Research, 41(3), 261–293.
  • Gerson, H. B. P., Sorby, S. A., Wysocki, A. i Baartmans, B. J. (2001). The development and assessment of multimedia software for improving 3-D spatial visualization skills. Computer Applications in Engineering Education, 9(2), 105–113.
  • Gittler, G. i Gluck, J. (1998). Differential transfer of learning: effects of instruction in descriptive geometry on spatial test performance. Journal for Geometry and Graphics, 2(1), 71–84.
  • Goldstein, D., Haldane, D. i Mitchell, C. (1990). Sex differences in visual–spatial ability: the role of performance factors. Memory & Cognition, 18(5), 546–550.
  • Goodenough, D. R., Gandini, E., Olkin, I., Pizzamiglio, L., Thayer, D. i Witkin, H. A. (1977). A study of X chromosome linkage with field dependence and spatial visualization. Behavior Genetics, 7(5), 373–387.
  • Green, S. C. i Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534–537.
  • Hausmann, M., Slabbekoorn, D., Van Goozen, S. H. M., Cohen-Kettenis, P. T. i Güntürkün, O. (2000). Sex hormones affect spatial abilities during the menstrual cycle. Behavioral Neuroscience, 114(6), 1245–1250.
  • Hegarty, M. i Kozhevnikov, M. (1999). Types of visual–spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684–689.
  • Hegarty, M. i Waller, D. A. (2005). Individual differences in spatial abilities. W: P. Shah i A. Miyake (red.), The Cambridge handbook of visuospatial thinking (s. 121–169). New York: Cambridge University Press.
  • Herman-Jeglińska, A. (1999). Różnice między kobietami a mężczyznami w zdolnościach poznawczych i organizacji funkcjonalnej mózgu: wpływ płci psychicznej. Przegląd Psychologiczny, 42(1–2), 73–99.
  • Hier, D. B. i Crowley, W. F. Jr. (1982). Spatial ability in androgen-deficient men. New England Journal of Medicine, 306(20), 1202–1205.
  • Hsi, S., Linn, M. C. i Bell, J. E. (1997). The role of spatial reasoning in engineering and the design of spatial instruction. Journal of Engineering Education, 86(2), 151–158.
  • Hubbard, E. M., Piazza, M., Pinel, P. i Dehaene, S. (2009). Numerical and spatial intuitions: a role for posterior parietal cortex? W: L. Tommasi, L. Nadel i M. A. Peterson, (red.), Cognitive biology: evolutionary and developmental perspectives on mind, brain and behavior (s. 221–246). Cambridge: Massachussets Institute of Technology Press.
  • Hyde, J. S. (2013). Gender similarities and differences. Annual Review of Psychology, 65(1), 373–398.
  • Iachini, T., Sergi, I., Ruggiero, G. i Gnisci, A. (2005). Gender differences in object location memory in a real three-dimensional environment. Brain and Cognition, 59(1), 52–59.
  • Ishikawa, T. i Kastens, K. A. (2005). Why some students have trouble with maps and other spatial representations. Journal of Geoscience Education, 53(2), 184–197.
  • Kali, Y. i Orion, N. (1996). Spatial abilities of high-school students in the perception of geologic structures. Journal of Research in Science Reaching, 33(4), 369–391.
  • Kass, S., Ahlers, R. i Dugger, M. (1998). Eliminating gender differences through practice in an applied visual spatial task. Human Performance, 11(4), 337–349.
  • Kimura, D. (1996). Sex, sexual orientation and sex hormones influence human cognitive function. Current Opinion in Neurobiology, 6(2), 259–263.
  • Kopcha, T. J., Otumfuor, B. A. i Wang, L. (2015). Effects of spatial ability, gender differences, and pictorial training on children using 2-D and 3-D environments to recall landmark locations from memory. Journal of Research on Technology in Education, 47(1), 1–20.
  • Koscik, T., O’Leary, D., Moser, D. J., Andreasen, N. C. i Nopoulos, P. (2009). Sex differences in parietal lobe morphology: relationship to mental rotation performance. Brain and Cognition, 69(3), 451–459.
  • Kosslyn, S. M. i Thompson, W. L. (2003). When is early visual cortex activated during visual mental imagery? Psychological Bulletin, 129(5), 723–746.
  • Kozhevnikov, M., Kosslyn, S. i Shephard, J. (2005). Spatial versus object visualizers: a new characterization of visual cognitive style. Memory & Cognition, 33(4), 710–726.
  • Kozhevnikov, M., Motes, M. A. i Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31(4), 549–579.
  • Kozhevnikov, M., Motes, M. A., Rasch, B. i Blajenkova, O. (2006). Perspective-taking vs mental rotation transformations and how they predict spatial navigation performance. Applied Cognitive Psychology, 20(3), 397–417.
  • Lajoie, S. P. (2003). Individual differences in spatial ability: developing technologies to increase strategy awareness and skills. Educational Psychologist, 38(2), 115–125.
  • Linn, M. C. i Kyllonen, P. (1981). The field dependence–
  • –independence construct: some, one, or none. Journal of Educational Psychology, 73(2), 261–273.
  • Linn, M. C. i Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Development, 56(6), 1479–1498.
  • Lohman, D. F. (1996). Spatial ability and g. W: I. Dennis i P. Tapsfield (red.), Human abilities: their nature and measurement (s. 97–116). Mahwah: Lawrence Erlbaum.
  • Lohman, D. F. i Nichols, P. D. (1990). Training spatial abilities: effects of practice on rotation and synthesis tasks. Learning and Individual Differences, 2(1), 67–93.
  • Lubinski, D. i Benbow, C. P. (2006). Study of mathematically precocious youth after 35 years: uncovering antecedents for the development of math-science expertise. Perspectives on Psychological Science, 4(1), 316–345.
  • Lytton, H. i Romney, D. M. (1991). Parents’ differential socialization of boys and girls: a meta-analysis. Psychological Bulletin, 109(2), 267–275.
  • Maeda, Y. i Yoon, S. Y. (2013). A meta-analysis on gender differences in mental rotation ability measured by the Purdue spatial visualization tests: visualization of rotations (PSVT: R). Educational Psychology Review, 25(1), 69–94.
  • McCallin, R. C. (2006). Test administration. W: S. M. Downing i T. M. Haladyna (red.), Handbook of test development (s. 625–652). Mahwah: Lawrence Erlbaum.
  • McGee, M. G. (1979). Human spatial abilities: psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889–911.
  • Miller, D. I. i Halpern, D. F. (2013). Can spatial training improve long-term outcomes for gifted STEM undergraduates? Learning and Individual Differences, 26, 141–152.
  • Miller, R. B., Kelly, G. N. i Kelly, J. T. (1988). Effects of Logo computer programming experience on problem solving and spatial relations ability. Contemporary Educational Psychology, 13(4), 348–357.
  • Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P. i Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology: General, 130(4), 621–640.
  • Moè, A. (2009). Are males always better than females in mental rotation? Exploring a gender belief explanation. Learning and Individual Differences, 19(1), 21–27.
  • Moffat, S. D. i Hampson, E. (1996). A curvilinear relationship between testosterone and spatial cognition in humans: possible influence of hand preference. Psychoneuroendocrinology, 21(3), 323–337.
  • Monahan, J. S., Harke, M. A. i Shelley, J. R. (2008). Computerizing the mental rotations test: are gender differences maintained? Behavior Research Methods, 40(2), 422–427.
  • Morris, R. G. i Parslow, D. (2004). Neurocognitive components of spatial memory. W: G. L. Allen i D. Haun (red.), Remembering where: advances in understanding spatial memory (s. 217–247). Mahwah: Lawrence Erlbaum.
  • Nauta, M. M., Epperson, D. L. i Kahn, J. H. (1998). A multiple-groups analysis of predictors of higher level career aspirations among women in mathematics, science, and engineering majors. Journal of Counseling Psychology, 45(4), 483–496.
  • Ohnishi, T., Matsuda, H., Hirakata, M. i Ugawa Y. (2006). Navigation ability dependent neural activation in the human brain: an fMRI study. Neuroscience research, 55(4), 361–369.
  • Oltman, P. K. (1968). A portable rod-and-frame apparatus. Perceptual and Motor Skills, 26(2), 503–506.
  • Ortner, T. M. i Sieverding, M. (2008). Where are the gender differences? Male priming boosts spatial skills in women. Sex Roles, 59(3–4), 274–281.
  • Pajares, F. i Miller, M. D. (1997). Mathematics self-efficacy and mathematical problem solving: implications of using different forms of assessment. The Journal of Experimental Education, 65(3), 213–228.
  • Pérez-Fabello, M. i Campos, A. (2007). Influence of training in artistic skills on mental imaging capacity. Creativity Research Journal, 19(2–3), 227–232.
  • Peters, M., Chisholm, P. i Laeng, B. (1995). Spatial ability, student gender, and academic performance. Journal of Engineering Education, 84(1), 69–73.
  • Pezaris, E. i Casey, M. B. (1991). Girls who use “masculine” problem-solving strategies on a spatial task: proposed genetic and environmental factors. Brain and Cognition, 17(1), 1–22.
  • Quaiser-Pohl, C., Geiser, C. i Lehmann, W. (2006). The relationship between computer-game preference, gender, and mental-rotation ability. Personality and Individual Differences, 40(3), 609–619.
  • Robert, M. i Chaperon, H. (1989). Cognitive and exemplary modelling of horizontality representation on the Piagetian water-level task. International Journal of Behavioral Development, 12(4), 453–472.
  • Rohde, T. E. i Thompson, L. A. (2007). Predicting academic achievement with cognitive ability. Intelligence, 35(1), 83–92.
  • Schaefer, P. D. i Thomas, J. (1998). Difficulty of a spatial task and sex difference in gains from practice. Perceptual and Motor Skills, 87(1), 56–58.
  • Shea, D. L., Lubinski, D. i Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: a 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604–614.
  • Silverman, I., Choi, J. i Peters, M. (2007). The hunter-gatherer theory of sex differences in spatial abilities: data from 40 countries. Archives of Sexual Behavior, 36(2), 261–268.
  • Silverman, I., Kastuk, D., Choi, J. i Phillips, K. (1999). Testosterone levels and spatial ability in men. Psychoneuroendocrinology, 24(8), 813–822.
  • Sims, V. K. i Mayer, R. E. (2002). Domain specificity of spatial expertise: the case of video game players. Applied Cognitive Psychology, 16(1), 97–115.
  • Sorby, S. A. (2009). Education research in developing 3-D spatial skills for engineering students. International Journal of Science Education, 31(3), 459–480.
  • Sorby, S. A. (2012). Developing spatial thinking. Clifton Park: Delmar Cengage Learning.
  • Sorby, S. A. i Baartmans, B. J. (2000). The development and assessment of a course for enhancing the 3-D spatial visualization skills of first year engineering students. Journal of Engineering Education, 89(3), 301–307.
  • Sorby, S. A., Casey, B., Veurink, N. i Dulaney, A. (2013). The role of spatial training in improving spatial and calculus performance in engineering students. Learning and Individual Differences, 26, 20–29.
  • Spence, I., Yu, J. J., Feng, J. i Marshman, J. (2009). Women match men when learning a spatial skill. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(4), 1097–1103.
  • Stafford, R. E. (1961). Sex differences in spatial visualization as evidence of sex-linked inheritance. Perceptual and Motor Skills, 13(3), 428–428.
  • Stieff, M. i Uttal, D. (2015). How much can spatial training improve STEM achievement? Educational Psychology Review, 27(4), 607–615.
  • Terlecki, M. S., Newcombe, N. S. i Little, M. (2008). Durable and generalized effects of spatial experience on mental rotation: gender differences in growth patterns. Applied Cognitive Psychology, 22(7), 996–1013.
  • Thomsen, T., Hugdahl, K., Ersland, L., Barndon, R., Lundervold, A., Smievoll, A. I., Roscher, B. E. i Sundberg, H. (2000). Functional magnetic resonance imaging (fMRI) study of sex differences in a mental rotation task. Medical Science Monitor, 6(6), 1186–1196.
  • Tronsky, L. N. (2005). Strategy use, the development of automaticity, and working memory involvement in complex multiplication. Memory & Cognition, 33(5), 927–940.
  • Uttal, D. H. i Cohen, C. A. (2012). Spatial thinking and STEM education: when, why and how. Psychology of Learning and Motivation, 57(2), 147–181.
  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C. i Newcombe, N. S. (2013). The malleability of spatial skills: a meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402.
  • Van de Weijer-Bergsma, E., Kroesbergen, E. H. i Luit, J. E. van (2015). Verbal and visual-spatial working memory and mathematical ability in different domains throughout primary school. Memory & Cognition, 43(3), 367–378.
  • Van Goozen, S. H., Cohen-Kettenis, P. T., Gooren, L. J., Frijda, N. H. i Van de Poll, N. E. (1995). Gender differences in behaviour: activating effects of cross-sex hormones. Psychoneuroendocrinology, 20(4), 343–363.
  • Vandenberg, S. G. i Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599–604.
  • Ven, S. H. van der, Maas, H. L. van der, Straatemeier, M. i Jansen, B. R. (2013). Visuospatial working memory and mathematical ability at different ages throughout primary school. Learning and Individual Differences, 27, 182–192.
  • Vogel, J. J., Bowers, C. A. i Vogel, D. S. (2003). Cerebral lateralization of spatial abilities: a meta-analysis. Brain and Cognition, 52(2), 197–204.
  • Voyer, D. i Saunders, K. A. (2004). Gender differences on the mental rotations test: a factor analysis. Acta Psychologica, 117(1), 79–94.
  • Voyer, D., Nolan, C. i Voyer, S. (2000). The relation between experience and spatial performance in men and women. Sex Roles, 43(11), 891–915.
  • Voyer, D., Voyer, S. i Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250–270.
  • Wai, J., Lubinski, D. i Benbow, C. P. (2009). Spatial ability for STEM domains: aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835.
  • Webb, R. M., Lubinski, D. i Benbow, C. P. (2007). Spatial ability: a neglected dimension in talent searches for intellectually precocious youth. Journal of Educational Psychology, 99(2), 397–420.
  • Wiedenbauer, G. i Jansen-Osmann, P. (2008). Manual training of mental rotation in children. Learning and Instruction, 18(1), 30–41.
  • Witkin, H. A., Oltman, P. K., Raskin, E. i Karp, S. A. (1971). A manual for the embedded figures tests. Palo Alto: Consulting Psychologists Press.
  • Workman, J. E., Caldwell, L. F. i Kallal, M. J. (1999). Development of a test to measure spatial abilities associated with apparel design and product development. Clothing & Textiles Research Journal, 17(3), 128–133.
  • Wraga, M., Helt, M., Jacobs, E. i Sullivan, K. (2007). Neural basis of stereotype-induced shifts in women’s mental rotation performance. Social Cognition and Affective Neuroscience, 2(1), 12–19.
Notes
http://www.edukacja.ibe.edu.pl/images/numery/2017/1-5-drazkowski-i-in-zdolnosci-przestrzenne.pdf
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-cb9a869f-cc91-4f1b-bfd1-ad77d3498911
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.