PL EN


2014 | 15 | 2 | 7-16
Article title

MANAGEMENT OF AN AGRICULTURAL ENTERPRISE ON THE BASIS OF ITS ECONOMIC STATE FORECASTING

Content
Title variants
Languages of publication
EN
Abstracts
EN
On the basis of the mechanism of accidental sequences canonical expansions the algorithm of the economic state of agricultural enterprise forecasting is obtained which allows to estimate the results of its work in future under the realization of a certain reorganization (change of land resources, labour resources, fixed assets).
Year
Volume
15
Issue
2
Pages
7-16
Physical description
Dates
published
2014
Contributors
  • Department of Higher and Applied Mathematics Mykolaiv National Agrarian University
  • Department of Intelligent Information Systems Petro Mohyla Black Sea State University
  • Department of Finances and Credit Mykolaiv National Agrarian University
References
  • Altman E.I., Marco G., Varetto F. (1994) Corporate distress diagnosis: comparisons using linear discriminant analysis and neural networks, Journal of Banking and Finance, Vol. 18 – pp. 505-529.
  • Altman E.I., Narayanan P. (1997) An international survey of business failure classification models, Financial Markets, Institutions and Instruments, Vol. 6, №2 – pp. 81-130.
  • Atamanyuk I.P. (2005) Algorithm of extrapolation of a nonlinear random process on the basis of its canonical decomposition, Cybernetics and Systems Analysis, №2 – pp. 131-138.
  • Atamanyuk I.P. (2009) Optimal Polynomial Extrapolation of Realization of a Random Process with a Filtration of Measurement Errors, Journal of Automation and Information Sciences, Volume 41, Issue 8 – pр. 38-48.
  • Atamanyuk I.P., Kondratenko V.Y., Kozlov O.V., Kondratenko Y.P. (2012) The algorithm of optimal polynomial extrapolation of random processes, Lecture Notes in Business Information Processing, 115 LNBIP – pp. 78-87.
  • Granger C.W.J., Newbold P. (1986) Forecasting economic time series. Academic Press –114 p.
  • Hall S.G. (1994) Applied economic forecasting techniques. Harvester Wheatsheaf – 224 p.
  • Kudritskiy V.D. (2001) Filtration, extrapolation and identification of the realizations of random functions. – Kyev: FADA ltd. – 176 p.
  • Połoński M. (2012) Prognozowanie czasu zakończenia inwestycji na podstawie jej bieżącego zaawansowania, Metody ilościowe w badaniach ekonomicznych, Tom XIII/3 – s. 169-179.
  • Prędki A. (2013) Subsampling approach for statistical inference within stochastic DEA models, Metody ilościowe w badaniach ekonomicznych, Vol. XIV, No. 2 – s. 158-168.
  • Pugachev V. (1962) Theory of random functions and its implementation. Moscow: Physmathgis – 720 p.
  • Ryabushkin B.T. (1987) Application of statistical methods in an economic analysis and prognostication: Prakt. guidance. M.: Finances and statistics – 175 p.
  • Sirenko N.N. (2010) Management of strategy innovative development of agrarian sector of economy of Ukraine. – Mykolaiv – 416 p.
  • Szmuksta-Zawadzka M., Zawadzki J. (2013) Modele harmoniczne ze złożoną sezonowością w prognozowaniu szeregów czasowych z lukami systematycznymi, Metody ilościowe w badaniach ekonomicznych, Tom XIV/3 – s. 81-90.
  • Teyl G. (1971) Economy prognosis and making decision. M.: Statistics – 488 p.
  • Trifonov Yu.V., Plehanova A.F., Yurlov F.F. (1998) Choice of effective decisions in an economy in the conditions of vagueness. Nizhniy Novgorod: Publishing house NNGU – 140 p.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-cbb97c70-eb77-455c-9cc0-bf672fa61293
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.