PL EN


2014 | 12(18) | 57-74
Article title

Randomness and determinism: why are the planetary orbits elliptical?

Authors
Content
Title variants
Languages of publication
PL EN
Abstracts
EN
I consider the interpretation of the notion of randomness in natural science from Aristotle to Poincaré, the interrelation between randomness and necessity according to Poincaré and the narrower understanding of randomness in the theory of probability and statistics. Kepler explained the ellipticity of the planetary orbits by random causes and Kant and Laplace largely followed him in spite of Newton who had established that ellipticities depended on the planets’ velocity.
Year
Issue
Pages
57-74
Physical description
Contributors
author
References
  • Arbuthnot J. (1712), An argument for Divine Providence taken from the constant regularity observed in the birth of both sexes. In Kendall M.G., Plackett R.L., Editors (1977), Studies in the History of Statistics and Probability, vol. 2. London, pp. 30–34.
  • Baer K. (1873), Zum Streit über den Darwinismus. Dorpat.
  • Belvalkar S.K., Ranade R.D. (1927), History of Indian Philosophy, vol. 2. Poona.
  • Bertrand J. (1888), Calcul des probabilités. Second edition 1907. Reprint of first edition: New York, 1970.
  • Boscovich, R. (1758, in Latin/1966), Theory of Natural Philosophy. Cambridge, Mass.
  • Brillouin L. (1956), Science and Information Theory. New York. [New York, 1962.]
  • Campbell L., Garnett W. (1882), Life of Maxwell. London. [London, 1884; New York–London, 1969.]
  • Chaitin G.J. (1975), Randomness and mathematical proof. Scient. American, vol. 232, pp. 47–52.
  • Cournot A.A. (1843), Exposition de la théorie des chances et des probabilités. Paris, 1984.
  • Darwin C. (1859/1964), Origin of Species. Cambridge, Mass.
  • De Moivre A. (1718), Doctrine of Chances. New York, 1967. A reprint of the third edition of 1756.
  • – (1733, Latin), A method of approximating the sum of the terms of the binomial (a + b) n expanded into a series from whence are deduced some practical rules to estimate the degree of ascent which is to be given to experiments. Translated by author, incorporated in the second edition of the Doctrine (1738) and in extended form in its third edition (1756/1967, pp. 243–254).
  • De Montessus R. (1903), Un paradoxe du calcul des probabilités. Nouvelles annales mathématiques, sér. 4, t. 3, pp. 21–31.
  • Ekeland I. (2006), The Best of All Possible Worlds. Mathematics and Destiny. Chicago– London.
  • Fourier J.B.J. (1829), Historical Eloge of the Marquis De Laplace. London, Edinb. and Dublin Phil. Mag., ser. 2, vol. 6, pp. 370–381. The original French text was only published in 1831.
  • Galen C. (1951), Hygiene. Springfield, Illinois.
  • Great Books (1952), Great Books of the Western World, vols 1–54. Chicago.
  • Harvey W. (1651 in Latin), Anatomical Exercises in the Generation of Animals. In Great Books (1952, vol. 28, pp. 329–498).
  • Herschel J.F. (lecture 1860). Sun. In author’s Familiar Lectures on Scient. Subjects. London-New York, 1866, pp. 47–90.
  • Herschel W. (1817), Astronomical observations and experiments tending to investigate the local arrangement of celestial bodies in space. In author’s Scient. Papers, vol. 2. London, 1912. Reprinted: Bristol, 2003.
  • Hobbes T. (1646), Of liberty and necessity. Engl. Works, vol. 4. London, 1840, 229–278.
  • Kant I. (1755), Allgemeine Naturgeschichte und Theorie des Himmels. In author’s Ges. Schriften, Abt. 1, Bd. 1. Berlin, 1910, pp. 215–368.
  • Kepler J. (1596), Mysterium Cosmographicum. Ges. Werke, Bd. 8. München, 1963, pp. 7–128. The 1963 version is a reprint of the second edition of 1621 with additions having been inserted by Kepler to the first edition to many chapters. German translation: Augsburg, 1923; München–Berlin, 1936.
  • – (1606, in Latin), Über den Neuen Stern im Fuß des Schlangenträger. Würzburg, 2006.
  • – (1609, in Latin), New Astronomy. Cambridge, 1992.
  • – (1610), Tertius interveniens. In author’s Ges. Werke, Bd. 4. München, 1941, pp. 149–258. In German.
  • – (1619, in Latin), Harmony of the World. Philadelphia, Book 5, 1997. German translation: Münich–Berlin, 1939.
  • – (1620–1621, in Latin), Epitome of Copernican Astronomy, books 4–5. In Great Books (1952, vol. 16, pp. 845–1004).
  • Kolmogorov A.N. (1983), On the logical foundations of probability theory. Sel. Works, vol. 2. Dordrecht, 1992, pp. 515–519.
  • Lamarck J.B. (an 8, 1800), Annuaire météorologique, t. 1. Paris.
  • – (1810–1814, manuscript), Aperçu analytique des connaissances humaines. Partly published: Vachon M. et al. (1972), Inédits de Lamarck. Paris, pp. 69–141. Russian translation of entire work to which I refer is in author’s Izbrannye Proizvedenia (Sel. Works), vol. 2. Moscow, 1959, pp. 93–662.
  • – (1815), Histoire naturelle des animaux sans vertèbres, t. 1. Paris. Laplace P.S. (1776), Recherches sur l’intégration des equations différentielles. Oeuvr. Compl., t. 8. Paris, 1891, pp. 69–197.
  • – (1796, 1798/1799, 1808, 1813, 1835), Exposition du système du monde. Oeuvr. Compl., t. 6. Paris, 1884.
  • – (1812), Théorie analytique des probabilités. Oeuvr. Compl., t. 7. Paris, 1886.
  • – (1814, in French), Philosophical Essay on Probabilities. New York, 1995.
  • Markov A.A. (1911, in Russian), On the basic principles of the calculus of probability and on the law of large numbers. In Ondar Kh.O., Editor (1977, in Russian), The Correspondence between A.A. Markov and A.A. Chuprov etc. New York, 1981, pp. 149–153.
  • Maupertuis P.L.M. (1745), Venus physique. Oeuvres, t. 2. Lyon, 1756, pp. 1–133.
  • – (1751), Système de la nature. Ibidem, pp. 135–184.
  • – (1756), Sur le divination. Ibidem, pp. 298–306.
  • Maxwell J.C. (1859), On the stability of the motion of Saturn’s rings. Scient. Papers, vol. 2. Paris, 1927, pp. 288–376.
  • – (read 1873, 1873a), Does the progress of physical science tend to give any advantage to the opinion of necessity […] over that of contingency of events. In Campbell & Garnett (1882, pp. 357–366).
  • – (1873b, manuscript; publ. 1882), Discourse on molecules. In Campbell & Garnett (1882, pp. 272–274).
  • Newton I. (1704), Opticks. London, 1931. Queries were added later, from 1717 onward, and the edition of 1931 (reprinted in 1952) was based on that of 1730.
  • Pascal B. (1963), Pensées, fragment 413-162. Oeuvr. Compl. Paris, pp. 493–649.
  • Poincaré H. (1896), Calcul des probabilités. Paris. Second edition, 1912, reprint Sceaux, 1987.
  • – (1907), Le hazard. La Rev. du Mois, t. 3, pp. 257–296.
  • – (1908), Science et méthode. Paris.
  • Poisson S.-D. (1837), Recherches sur la probabilité des jugements, principalement en matière criminelle et en matière civile. Paris. [Paris, 2003.]
  • Prokhorov You.V. (1988), The Bertrand paradox. Encyclopedia of Mathematics, vol. 1. Dordrecht, pp. 370–371.
  • Sheynin O. (1971), Newton and the classical theory of probability. Arch. Hist. Ex. Sci., vol 7, pp. 217–243.
  • – (1974), On the prehistory of the theory of probability. Arch. Hist. Ex. Sci., vol. 12, pp. 97–141.
  • – (1991), The notion of randomness from Aristotle to Poincaré. Math., Inform., Sci. Hum., 29e année, No. 114, pp. 41–55. Also in my Russian Papers on the History of Probability and Statistics. Berlin, 2004 and at www.sheynin.de.
  • – (2003), Geometric probability and the Bertrand paradox. Historia Scientiarum, vol. 13, pp. 42–53.
  • Tutubalin V.N. (1972, Russian), Theory of probability in natural science. In: Studies in the History of Statistics and Probability, vol. 2. Berlin, 2011, pp. 7–56.
  • www. sheynin.de.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-cbe97667-3bf7-455a-b83a-e0b48492cf2f
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.