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Abstract: This paper investigates the ruin probabilities for a two-dimensional fractional
Brownian risk model with a proportional reinsurance scheme. The author focused on the
joint and simultaneous ruin probabilities in a finite-time horizon. The risk processes of both
insurance and reinsurance companies are composed of a large number of i.i.d. sub-risk
processes, representing independent businesses. The asymptotics were derived as the initial
capital tends to infinity.
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1. Introduction

Consider a two-dimensional risk model with a proportional reinsurance
scheme. Suppose that two companies, insurance and reinsurance, share
claims in proportions a;,0, >0, where g, +0, =1, and receive
premiums at rates c;,c, > 0, respectively. Let R; denote the risk process
of i-th company

Ri(t) =ag + Cl't - O'iX(t),t = 0,

where X(t) describes the accumulated claims up to time t, a; > 0 is the
initial capital and c; > 0 is the premium rate, i = 1,2.

In the literature, various processes of accumulated claims are
investigated, with particular emphasis on both the Lévy and Gaussian
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processes. The study of Gaussian processes in risk theory was initiated in
the fundamental work of Iglehart (1969), where X(t) is a standard
Brownian motion and appears as the limit in the so-called diffusion
approximation regime. In an important work by Michna (1998), it was
argued that the class of fractional Brownian motions can serve as a right
approximation of the accumulated claims process.

The modern risk theory focuses on the ruin probability in multi-
dimensional risk models. The exact distribution of ruin probabilities are
known only in a few specific cases in dimension two: the Brownian motion
(Kepczynski, 2020) and spectrally one-sided Lévy processes (Avram,
Palmowski, and Pistorius, 2008a; Avram, Palmowski, and Pistorius,
2008b; Michna, 2021). This is the motivation to study the asymptotic
properties, bounds and Laplace transform of the ruin probability.

Having introduced the risk processes, one can distinguish the following
ruin types:

e Simultaneous ruin occurs when there exists t € [0, T] such that both
companies are ruined at time ¢t

Tl (@1,02) = P inf (R0 R() < (00)).

e Joint ruin occurs when both companies are ruined in time interval
[0, T], not necessarily at the same moment

2T (ay,a,) = P (s inf Ri(s) < Oand inf Ry(6) < o).

o At least one’ ruin occurs when at least one insurance company is
ruined in time interval [0, T]

T _ . .
T (ay,a,) = P (sel%fT]Rl(s) <0or inf Ry(0) < 0).

One can refer to [Avram et al., 2008a; Avram et al., 2008b; Debicki,
Ji, and Rolski, 2019, 2020a; Degbicki, Hashorva, and Krystecki, 2020;
Debicki, Hashorva, and Michna, 2018; Dgbicki, Kosinski, Mandjes, and
Rolski, 2010; Foss, Korshunov, Palmowski, and Rolski, 2017; Ji and
Robert, 2018; Kepczynski, 2020; Michna, 2021) for relevant recent
discussions about two-dimensional risk models. For example, models with
Gaussian claim processes are considered in (Debicki et al., 2019; Debicki,
Ji, and Rolski, 2020; Degbicki, Hashorva, and Krystecki, 2020; Dgbicki
et al., 2018; Debicki et al., 2010; Ji and Robert, 2018; Kepczynski, 2020]
while Lévy claim processes are investigated in (Avram et al., 2008a,
2008b; Debicki, Hashorva, and Michna, 2018; Foss et al., 2017; Michna,
2021). The above papers consider mainly asymptotics and, in Lévy claims



Proportional reinsurance for a fractional Brownian risk model 151

case, also contain exact distributions and Laplace transforms of ruin
probabilities.

In this study the two-dimensional fractional Brownian risk model was
examined, i.e. suppose that X (t) is a fractional Brownian motion By (t), that
is, a centered Gausssian process with stationary increments, covariance

function r(s,t) = %(Itlz” + |s|2H — |t — s|?) and By (0) = 0 a.s. We
focus on joint and simultaneous ruin probabilities in cases when the risk
processes of both insurance and reinsurance companies are composed of
a large number of i.i.d. sub-risk processes Rl.(k), representing independent
businesses. Thus we investigate

N N
al (N):=P (Elt ef0,7]: Y R® @) <0, > RP ) < o) (1.1)
and

N N
T . — : ®) . ()
Tgna(N) : =P <S€1[r(1)'fT] kz R, (s) <0, tel[I(l),fT] kz R (t) < 0), (1.2)
=1 =1

where Ri(k)(t) =aqa; +ct— aiB,Sk)(t),k =1,...,N., concentrating on the
asymptotic behaviour of ruin probabilities (1.1) and (1.2), as N = co. In
Theorem 2.1, which contains the main contribution of this paper, one finds
exact asymptotics of the simultaneous ruin probability. In Lemma 2.2 and
Theorem 2.2, asymptotics of the joint ruin probability, logarithmic and
exact, were studied.

Let us briefly mention the following standard notation for two given
positive functions f(-) and g(-) which are use in this paper. One can write

fG) = gG)( +o(D) if limf()/g(x) =1 and f(x) = o(g(x) if
lim £ = 0,and 1 — @(x) = ¥(x) :=P(N > x), where IV is a stan-

x—00 g(x
dard normal random variable.

The remainder of the paper is organized as follows. In Section 2 the
author formalizes the problem and presents the main results of this study.
Section 3 contains auxiliary facts and proofs.

2. Main results

Let us begin with several observations and assumptions.
e Using those, for g;,0, > 0
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nl (a;,a;) =P (tel[r(l)fr](al + ot — 01 X(t),a; + et — 0, X(t)) < (0,0))
Nr 18(24) ' @ o 4 o
= IP’( inf <—+—t -X(t),—+—t —X(t)) < (0,0))
te[0,T] \o; 0y o, Oy
and
T . al Cl
Tona(@1,az) = P SEI[I(lJfT] 0—1 + 0—15 —-X(s)) <0
and

. a ©C
inf | —+—t—X(1)])<0
teo,rI\o, 0,
without loss of generality we shall suppose thato; = 1,i = 1, 2.

e Note that Z’,LIB,(,") (t) =4 VNBy(t), where =, denotes equality in
distribution. Thus one can rewrite the ruin probabilities (1.1) and (1.2) as

nln(N) = P(3t € [0,T]: (By(t) — c;VNE) >
a; VN, (By(t) — c;VNt) > a,VN),
and

nl J(N) =P (tg[l(J)pT](BH(t) — ¢;VNt) > a; VN,
sup (Bu(®) - c;VNE) > a2m>.
t€[0,T]

e Bearing in mind the application in reinsurance mathematics, one can
focus on the case with positive drifts ¢, c, > 0. Observe that the
assumption c¢; = ¢, leads to classical ruin probability with the initial
capital equal max(a;,a;). Due to the symmetry of the two-
dimensional problem, in the rest of the paper without loss of generality
one assumes that ¢; > ¢, > 0.

e Note thatif a; = a, > 0, then

{3t € [0, T]: (By(t) — c;VNt) > a;VN, (B (t) — c;VNt) > a,VN} =
{ sup (By(t) — c;VNt) > a; VN, sup (By(t) — c,VNt) > az\/ﬁ} =
te[o0,T] te[0,T]

{ sup (BH(t) — clx/ﬁt) > alx/ﬁ}
te[0,T]

and this problem degenerates to the one-dimensional ruin, i.e.



Proportional reinsurance for a fractional Brownian risk model 153

SLASKI
PRZEGLAD
STATYSTYCZNY

nl (N) =nl 4(N) = ]P’( sup (BH(t) - clx/ﬁt) > a1\/N>,
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which was considered in (Dgbicki and Mandjes, 2003). To avoid
dimension-reduction, we shall assume 0 < a; < a,.

Denote t* : = “2-2% |n the rest of the paper the author focused on the

C1—C2

case £*< 7, which is the only one that leads to non-degenerated scenarios.
e It follows from the general theory on extremes of Gaussian processes

that in the one-dimensional case, the point that maximizes variance of
5H+—(Ct_)t corresponds to the logarithmic asymptotics; see e.g. (Piterbarg,

1996). That is

logP (sup(BH(t) - cix/ﬁt) > aNN)
20

. t> —
131_{20 N -
1 Bu(t) \1
—= [supVar ( )] .
2 t=0 a; + cit

Elementary calculations show that

t v (BH(O) Gl ori=12
L= r = , = 1,4.
[T argsuba a; +ct) c(1—H) ort

Additionally, by assumptions 0 < a; < a, and ¢; > ¢, > 0 it holds
that

t; < t,.

It turns out that points t; and t, also play an important role in two-
dimensional case. As shown later, the order between t,, t, and t* affects
the asymptotics of 7%, (N) and nL,,, (N), as N — oo.

Let us introduce some constants that play a crucial role in the main
results of this study. First we define the classical Pickands constant

1
Hoy = lim =E| exp| sup (\/EBH(t) — tZH) .
T-o0 T te[0,T]

It is known that H,y € (0,00) for H € (0,1] and H; = 1,H, =
1/v/m; see e.g. (Debicki and Mandjes, 2003; Ji and Robert, 2018;
Piterbarg, 1996).

Furthermore, for any continuous function d(-) such that d(0) = 0,
define
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whenever the limit exists; see e.g. (J| and Robert, 2018).

2.1. Simultaneous ruin

This section contains the exact asymptotics of the simultaneous ruin
probability. Ji and Robert (2018) considered a similar problem in the
infinite-time horizon. The author used a similar argument to extend
Theorem 3.1 in (Ji and Robert, 2018) to the case T € (0, ).

First we recall the asymptotics of

YI(N;a,c):= ]P’( s[up](BH(t) — cVNt) > ax/ﬁ),
te[o,T

which play an important role in the further analysis.

The proof of the following lemma can be found in (Dg¢bicki and
Mandjes, 2003; Proposition 4.1).
Lemma 2.1. Suppose that H € (0,1] and a,c,T > 0. Let m: =

m(a,c,H) = (ﬁ)l_H (%)H
@OIT > %%, then, as N — oo,

1
H: 1 my\g~1 H-1 1 1
lPT(N;a, ¢) = 2H ( )H

. (m 1
T JRGT W2 e 2V (1+ 0(D)).

2 —_—
V2m/Nm
(i) IF T = ——2 then, as N — oo,
1-Hc

1 (1)%—1 111
,/H(1— H) W2 V2m/Nm

(iii,a) If T < ——2and H € (0,5) then, as N — oo,

P'(N;a,0) = e‘mTZN(1 +o(D)).

YT(N;a,c) =
1 H-2
T2H-Yq+cT)E'N 2 1 TH  _(a+c1)®

H. 2r?H (] 1
2H T —H(a + cT) Zg \/zn\/ﬁa+cT ( +o().

(iii, ) F T < H 2andH = lthen, as N — oo,
1-Hc¢ 2
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(iii,c) T < A 2andH e (l, 1) then, N - oo,
1-Hc 2
TH _(a+cT)?

1 tatcl)y
e 21?1 " (14 0(1)).
V2N (@ + ) (ol
Since in several cases the asymptotics of two-dimensional ruin
probabilities is reduced to a one-dimensional one, for the sake of brevity
the main result of this section is given in the language of one-dimensional
ruin probability in Lemma 2.1. Let us denote

|(a; + cit™)H —cit™| |
= , L= 1’2
(a; + c;t)t*

Theorem 2.1. Suppose thatt* < T.
(i) Ift* < ty,then,as N - oo,

nzim(N) = l/)T(N; aq, C1)(1 + 0(1)).
(ii) If t* = t4, then, as N — oo,

YT (N;a,c) =

A;

1
T (N) = 9T (N3 a3,¢) (1 + 0(D)).
(iii,a) If t; <t* <tyand H < 1/2, then,as N — oo,

A+ A a, +c;t* VH=2 a4yt
T _ 1 2 1 1 1 1
in ) = e, o (Cy ) ¥ W)
(1+o(D)).
(iii,b) If t; < t* <tyand H = 1/2, then,as N — oo,

~ a; +cqt”
al (N) = Fdy (WW) 1+ o(1)),
with d(t) = 2t™A,|t|1{t < 0} + 2t*A,|t|1{t = 0}.
(iii,c) Ift; < t*<tyand H > 1/2,then,as N — oo,
a; +cqt” )
T VN ) (1 + o(1)).

(iv) If t; < t, = t*, then,as N — oo,

Maim(N) = ¥ (

1
n?im(N) = ElpT(N; as, Cz)(l + 0(1)).

() Ift; <t, <t then,as N — oo,
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Tim(N) = YT (N; az, ¢2) (1 + 0(1)).
Remark 2.1. Ji and Robert (2018) showed that for function d(t) =
2t*A,|t|1{t < 0} + 2t*A,|t|1{t = 0} the constant HZ is well-defined,
positive and finite.

2.2. Joint ruin

This section contains the logarithmic and exact asymptotics of the joint
ruin probability. Kepczynski (2020) and Lieshout and Mandjes (2007)
considered the related problems for a standard Brownian motion in finite-
time and infinite-time horizons, respectively.

The following lemma gives the logarithmic asymptotics of the joint
ruin probability.

Lemma 2.2. Let H € (0,1]. Then,as N — oo,

log (nha(V)) 1 1

lim ————==—- in
N—oo N 2 0sst<st min(0?(s), 02(t))

_ 2

L By (s) BH(t)) 2H 2H _ 14 _ <|2H
where r(s,t) := Corr (a1+cls etol ZsHtH (t“" +s [t — s|“),

t2H

c(s,t) :=min (02(0 01(5)) and ¢ (t) : = Var (BH(t)) = i=12

a1(s)’ o5(t) aj+cit (ai+cit)?’

The following proposition considers the special case H = 1.

Proposition 2.2. Suppose that H = 1.
(D) Ift* <T,then

nl a(N) =¥ (#\/ﬁ)
(i) If t* > T, then
L (N) =¥ (#W)
Remark 2.3. Suppose that H = 1.
() Ift* < T, then,as N — oo,
- B 1 T (a1+c%T)
Tana(N) = J2rJN a5 + ¢iT 2T (1 + O(l))
(i) Ift* > T, then,as N — oo,
r 1 T _(a2+c2T)2N
Tana(N) = e 212 (1+0(1)).

V2m/N az + ¢, T



Proportional reinsurance for a fractional Brownian risk model 157

SLASKI

PRZEGLAD
Theorem 2.2. Suppose that t* < T. STATYSTYCZNY
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Tona(N) = YT (N; ay, C1)(1 + 0(1))-
(i) Ift; <t, <t*"<T,then,as N — oo,
Tana(N) = YT (N; az, ¢2)(1 + o(1)).

Remark 2.4. Theorem 2.2 gives exact asymptotics, but only in cases
which lead to a dimension-reduction scenario. In the remaining case t; <
t* < t, the analysis of 2, ;(N) goes beyond the approach presented in
this contribution and thus one can obtain only logarithmic asymptotics as
in Lemma 2.2. The author refered to a recent contribution by Kepczynski
(2020) where case t; < t* < t, was solved for H = 1/2.

3. Proofs

Proof of Theorem 2.1. We divide the proof into the following three cases:
t"<t,ty St <tyandty <t, <t
Case (i):t* < t;. We have

nhm(N) = P(3t € [t*,T]: (By(t) — c;VNt) >
a,VN, (By(t) — c;VNE) > ap/N) = P <t€s,[1;£ﬂ (By(t) — c1VNt) >
al\/ﬁ> >P <t:m ](BH (t) — c;VNt) > alx/ﬁ) - P (tes[ggq(BH(t) _
e VNE) > alx/ﬁ)
and
al (N) <P (éfﬁ% ](BH(t) — ¢,VNt) > a1\/1v>.

(ar+eit)?  (ag+eiT)?
(t*)ZH TZH -

1-H H\2 2
t .
(( 2 ) (C—l) ) = @*rah)” e obtain, as N — oo,
1-H H t2

From Lemma2.1 and the fact that

[P’( sup (BH(t) - Cl\/IVt) > al\/lv> =

te[0,t*]

0 (]P’( sup (BH(t) - CI\/IVt) > alﬁ))

te[o,T]
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nl (N) = IP( sup (By(t) — c;VNE) > a1\/N> (1+ o(1)).
te[0,T]
Case (ii —iv):t; < t* < ty. Let

_ By (t)
g()

Z(t)

, where g(t) = max(ay + ¢1t, a, + cyt)

and

02(t) = Var(Z(t)) = min (w( Bu(®) ). var (BH_“))> _

a; + cqt a, + c,t
t2H

g=(t)

,t=0.
We have
Ll (N) = IP< sup Z(t) > \/N)
te[o0,T]
Elementary calculations show that
topt = argsupoz (t) = t*
t=0

is the unique point that maximizes o2 (t) over [0, ).
We have a lower bound

2l (N) =P (supZ(t) > W) _p (supZ(t) > \/N)

t=0 t=T

and an upper bound

nl (N) < IP)(supZ(t) > \/N)
t=0
Since lim;_Z(t) = 0 a.s., the process {Z(t):t = 0} has bounded
sample paths. Hence from the Borell-TIS inequality (see Theorem 2.6.1 in
(Adler and Taylor, 2009)) we obtain that for all sufficiently large N, where

Co=E (supZ(t)) < w itholds
t=T

1 2
]P’(s Z(t >\/1V)Se —————(N-¢Cy) |
e’ ® *P 2supoz (t)( o)

t=T
Note that to, =t* € [0,T) and supaz(t) < a7 (top). Hence we
t=T
obtain, as N — oo,
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Thus,as N - oo,

T (W) = P (5up2(0) > VA ) (1 + 0(1) =

1 1
P (31: > 0: (By(t) — cqt) > a;N2QA-0) (B, (t) — c,t) > a,N2A-H)(1 + o(1)>
and the thesis follows from Theorem 3.1 in (Ji and Robert, 2018).
Case (v):t; < t, < t".We have
mlhm(N) = P(3t € [0,¢°]: (B4 () — c1VNt) > a;VN, (By () — c;VNt) > a,VN) =
IP’( sup (BH(t) - CZ\/NL') > az\/ﬁ)
tefo,t*]

and

nl (N) < IP( sup (By(t) — c,VNt) > ap/ﬁ).
te[0,T]
Sincet, < t* < T, Lemma 2.1 implies, as N — oo,

]P( sup (BH(t) - Cz\/ﬁt) > az\/ﬁ> =

te[0,t*]

IP( sup (By(t) — c,VNt) > azx/ﬁ) (1+ o(1)).

te[0,T]

Thus, as N — oo,
t€[o,T]

This completes the proof.

The following lemma provides logarithmic asymptotics of a joint
survival function for supremum of two centered and bounded Gaussian
processes. Its proof can be found in (Debicki et al., 2010; Remark 5).

Lemma 3.1. Let {X;(s):s € 71} and {X,(¢t): t € 7,} be two centered
and bounded R-valued Gaussian processes. Then, for q;,q, > 0,as N — oo,

logP <supX1(s) > q,VN, supX,(t) > qzx/ﬁ>
teT,

SET,

N
1 1

—Z inf
2 sed ter, min(oy (5)/qy, 02(6)/42)>




160 Krzysztof Kgpczynski

SLASKI
PRZEGLAD
STATYSTYCZNY (cq(s,t) —7(s, t))?
Nr 18(24) 1 1-1r2(s,t) trsnse o) | (1+0()

where  g;(t) = Var(X;(t)), r(s,t) = Corr(X,(s),X,(t)) and

. q1 02(t) 01(8) q
Cq(S't)_mln(%(S) @ ' @ Uz(t)).

Proof of Lemma 2.2. It is sufficient to observe that {aH(Ct) t> 0}
centered and bounded R-valued Gaussian processes, for i = 1,2. We note
that

H

o.(t) = . (Uz(t) 01(5)>

dT= O,T, ;t = RN
o+ 7= 10.The(s &) = min (775 0
and
By(s)  By(t) ):
a, + ¢y’ ay +cyt)  2sHtH

r(s,t) = (Corr( (t?H + s2H — |t — 5|2H),

Hence Lemma 3.1 implies the thesis.

Proof of Proposition 2.2. It is well-known that B, (t) = tV, with V' ~
N(0, 1); see e.g. (Piterbarg, 1996). We have that

T[gnd(N) = P( sup (NS - Cl\/ﬁs) > Cl1\/N, sup (Nt - Cz\/ﬁt) > az\/ﬁ);
S€[0,T] te[0,T]
where ' ~ NV (0,1).

Observe that, for i = 1,2, we have { sup (Nt — c;/Nt) > q; \/_}

te[0,T]
(NT = c/NT > aJ/N}.
Hence

{ sup (Vs — ¢;VNs) > a; VN, sup (Nt—czx/_t) > azx/_}

sel0,T]

a, +cT ay + C2T> \/N}

{]\f>max( 7 , 7

Finally, we obtain that

a, +¢T a, +C2T)\/N)

rl a(N) = P(]\f > max( T
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Proposition 2.2 and the fact that, as x — oo,

1 ) Nr 18(24)
PV > x) = e™7" (1 + o(1)).
X

Proof of Theorem 2.2. Recall that YT (N;a,c) = ]P’( sup (BH(t) -
te[0,T]
cVNt) > a\/N>. The proof immediately follows by a combination of

im(N) < who(N) < min(T (N; ay, ¢;), YT (N; ay, c3))
with Lemma 2.1 and Theorem 2.1.
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REASEKURACJA PROPORCJONALNA
W ULAMKOWO BROWNOWSKIM MODELU RYZYKA

Streszczenie: Artykut bada prawdopodobienstwa ruiny w dwuwymiarowym utamkowo
brownowskim modelu ryzyka w schemacie reasekuaracji proporcjonalnej. Autor skupit si¢
na prawdopodobienstwach ruin lacznej oraz symultanicznej w skonczonym horyzoncie
czasu. Procesy ryzyka firm ubezpieczeniowej oraz reasekuracyjnej sktadaja si¢ z duzej
liczby i.i.d procesow podryzyka reprezentujacych niezalezne biznesy. W pracy zostaly
wyznaczone asymptotyki, gdy kapitat poczatkowy dazy do nieskonczonosci.

Stowa kluczowe: utamkowy ruch Browna, asymptotyki, prawdopodobienstwo ruiny,
dwuwymiarowy model ryzyka, ubezpieczenia proporcjonalne.
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