PL EN


2014 | 12(18) | 83-104
Article title

Review of methods for data sets with missing values and practical applications

Content
Title variants
Languages of publication
PL EN
Abstracts
EN
The aim of this paper is to revise the traditional methods (complete-case analysis, available-case analysis, single imputation) and current methods (likelihood-based methods, multiple imputation, weighting methods) for handling the problem of missing data and to assess their usefulness in statistical research. The paper provides the terminology and the description of traditional and current methods and algorithms used in the analysis of incomplete data sets. The methods are assessed in terms of the statistical properties of their estimators. An example is provided for the multiple imputation method. The review indicates that current methods outweigh traditional ones in terms of bias reduction, precision and efficiency of the estimation.
Year
Issue
Pages
83-104
Physical description
Contributors
References
  • Allan F.E., Wishart J., A method of estimating the yield of a missing plot in field experiment work, “Journal of Agricultural Science” 1930, Vol. 20, No. 3, pp. 399–406.
  • Allison P., Missing data, [in:] R.E. Millsap, A. Maydeu-Olivares (eds.), The SAGE Handbook of Quantitative Methods in Psychology, SAGE Publications, London 2009, pp. 72–89.
  • Allison P., Multiple imputation for missing data: A cautionary tale, “Sociological Methods Research” 2000, Vol. 28, No. 3, pp. 301–309.
  • Balicki A., Metody imputacji braków danych w badaniach statystycznych, “Wiadomości Statystyczne” 2004, No. 9, pp. 1–19.
  • Bracha C., Metoda reprezentacyjna w badaniu opinii publicznej i marketingu, Efekt, Warszawa 1998.
  • Carpenter J.R., Kenward M.G., Multiple Imputation and its Application, John Wiley & Sons, Chichester 2013.
  • Carpenter J.R., Kenward M.G., Vansteelandt S., A comparison of multiple imputation and doubly robust estimation for analyses with missing data, “Journal of the Royal Statistical Society: Series A” 2006, Vol. 169, No. 3, pp. 571–584.
  • Fisher R.A., The Design of Experiments, Hafner Press, New York 1971.
  • Graham J.W., Missing Data. Analysis and Design, Springer, New York 2012.
  • GUS (Polish Central Statistical Office), Consumer Price Index, http://www.stat.gov.pl/gus/5840_1638_PLK_HTML.htm (21.02.2013).
  • Heitjan F., Little R.J., Multiple imputation for the fatal accident reporting system, “Applied Statistics” 1991, Vol. 40, No. 1, pp. 13–29.
  • Kalecki M., On the Gibrat Distribution, „Econometrica” 1945, no 13(2), pp. 161-170.
  • Laurens J.P., Development, Implementation and Evaluation of Multiple Imputation Strategies for the Statistical Analysis of Incomplete Data Sets, Partners Ispkamp, Enschede 1999.
  • Little J.A., Rubin D., Statistical Analysis with Missing Data, John Wiley & Sons, Hoboken 2002.
  • Molenberghs G., Kenward M.G., Missing Data in Clinical Studies, John Wiley & Sons, Chichester 2007.
  • Paradysz J., Szymkowiak M., Imputacja i kalibracja jako remedium na braki odpowiedzi w badaniu budżetów gospodarstw domowych, “Taksonomia” 2007, No. 14, pp. 74–81.
  • Rubin D.B., Multiple Imputation for Nonresponse in Surveys, John Wiley & Sons, Hoboken 1987.
  • Schafer J.L., Analysis of Multivariate Incomplete Data, Chapman & Hall, London 1997.
  • Social Diagnosis 2000–2013, http://www.diagnoza.com/index-en.html (2.01.2012).
  • Szymkowiak M., Badanie możliwości wykorzystania informacji pochodzących z rejestrów administracyjnych do kalibracji w krótkookresowej i rocznej statystyce przedsiębiorstw, Zeszyty Naukowe Uniwersytetu Ekonomicznego w Poznaniu 227, Poznań 2012, pp. 140–156.
  • Tian L., Inferences on the mean of zero-inflated lognormal data: The generalized variable approach, “Statistics in Medicine” 2005, Vol. 24, pp. 3223–3232.
  • Van Buuren S., Flexible Imputation of Missing Data, Taylor & Francis Group, Boca Raton 2012.
  • White I., Handling missing outcome data in randomised trials. Lecture 3: Multiple imputation, unpublished course materials (14–15.03.2013), MRC Biostatistics Unit, Cambridge 2013.
  • Zdobylak J., Zmyślona B., Analiza niepełnych danych w badaniach ankietowych, [in:] W. Ostasiewicz (ed.), Ocena i analiza jakości życia, Wydawnictwo Akademii Ekonomicznej we Wrocławiu, Wrocław 2004, pp. 269–323.
  • Zmyślona B., Uwagi na temat własności estymatorów wyznaczanych na bazie niepełnych danych, „Ekonometria” 2011, no 30, pp. 83–93.
  • Zmyślona B., Zastosowanie modeli hierarchicznych w bayesowskim wnioskowaniu statystycznym w przypadku danych niepełnych, “Ekonometria” 2006, nr 17, pp. 30–41.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-ce0ba543-a537-4744-a139-dea7118c5512
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.