PL EN


Journal
2016 | 3 (53) | 42-53
Article title

Wpływ liczebności próby i metody zastępowania braków odpowiedzi na miary dopasowania oraz wyniki modelowania ścieżkowego

Content
Title variants
EN
Influence of a sample size and a method of hand- ling missing values on the results and goodness of fit of the path relation model
Languages of publication
PL
Abstracts
EN
In the following article the authors describe the problem of influence of a sample size and a method of handling missing values on the results and goodness of fit of the path relation model. In order to estimate the goodness of fit of the model the authors use the indicators which describe the internal (Cronbach’s Alfa, Composite Reliability) and external (R2) stability of the model. By the term “results of the models” the authors mean estimated index values for latent variables and path coefficients of the SEM modeling procedure. In the research the authors analysed outcomes of Partial Least Squares method, used to build a model of Lublin shopping malls sector customers’ satisfaction and loyalty. The research included 43 datasets that varied in a number of observations and a method used for solving the missing values problem. Obtained results not only allowed the authors to statistically verify the main research problem of the study, but also enabled researchers to evaluate practical applicability of the analyzed imputation methods in real market and business consultancy activities. The research showed the supremacy of the Predictive Mean Matching and CART algorithms over other methods in the majority of analyzed ceases. Nevertheless, the differences between obtained results were rather insignificant, so one may assume that there is no visible influence of the used method on the practical interpretation of the obtained model and analyzed phenomenon.
Keywords
Journal
Year
Issue
Pages
42-53
Physical description
Contributors
References
  • Allison P.D., 2002, Missing Data, Thousand Oaks, Sage.
  • Anderson A.B., Basilevsky A., Hum, D.P., 1983, Missing Data: A Review of the Literature, [w:] Handbook of Survey Research, Rossi J.D.W.P.H., Anderson A.B. (red.), Academic Press, New York.
  • Breiman L., Friedman J.H., Olshen R.A., Stone C.J., 1984, Classification and Regression Trees, Taylor & Francis.
  • Chauvet G., Deville J.C., Haziza D., 2011, On balanced random imputation in surveys, Biometrika, vol. 98.2, s. 459-471.
  • Chen J., Rao J.N.K., Sitter R.R., 2000, Efficient random imputation for missing data in complex surveys, Statistica Sinica, s. 1153-1169.
  • Collins L.M., Schafer J.L., Kam C.M., 2001, A comparison of inclusive and restrictive strategies in modern missing-data procedures, Psychological Methods, vol. 6, s. 330-351.
  • Dempster A.P., Laird N.M., Rubin D.B., 1977, Maximum likelihood from incomplete data via the EM algorithm (with discussion), Journal of Royal Statistical Society B, no. 39.
  • Graham J.W., 2012, Missing Data: Analysis and Design, Statistics for Social and Behavioral Sciences.
  • Graham J.W., Cumsille P.E., Elek-Fisk E., w druku, Methods for Handling Missing Data, [w:] Comprehensive Handbook of Psychology. Research Methods in Psychology, Schinka J.A., Velicer W.F. (red.), Wiley, New York.
  • Hastie T., Tibshirani R., Friedman J., 2009, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York.
  • Heitjan D.F., Basu S., 1996, Distinguishing missing at random and missing completely at random, American Statistician, no. 50, s. 207-213.
  • Huptas R., 2010, Algorytm EM dla modeli mieszanych – podstawy teoretyczne, Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie, nr 813.
  • Little R.J.A., 1988, Missing data adjustments in large surveys, Journal of Business Economics and Statistics, no. 6, s. 287-301.
  • Little R.J.A., Rubin D.B., 1987, Statistical analysis with missing data, John Wiley & Sons, New York.
  • Magiera R., 2002, Modele i metody statystyki matematycznej, GiS, Wrocław.
  • Marsaglia G., Tsang W.W., 1998, The Monty Python method for generating random variables, ACM Transactions on Mathematical Software, no. 24(3), s. 341-350.
  • McLachlan G.J., Krishnan T., 1997, The EM Algorithm and Extensions, John Wiley & Sons, New York.
  • Pigott T.D., 2001, A review of methods for missing data, Educational Research and Evaluation, vol. 7, no. 4, s. 353-383.
  • Ripley B.D., 1996, Pattern Recognition and Neural Networks, Cambridge University Press.
  • Roderick J., Little A., 1988, A test of missing completely at random for multivariate data with missing values, Journal of the American Statistical Association, vol. 83, no. 404, s. 1198-1202.
  • Rubin D.B., 1986, Statistical matching using file concatenation with adjusted weights and multiple imputations, Journal of Business and Economic Statistics, no. 4, s. 87-94.
  • Schafer J.L., Graham J.W., 2002, Missing data: Our view of the state of the art, Psychological Methods, vol. 7, s. 147.
  • Skowron Ł., 2010, Satysfakcja i lojalność klienta – ujęcie modelowe i wyniki badań, [w:] Zarządzanie wartością klienta. Pomiar i strategie, Dobiegała-Korona B., Doligalski T. (red.), Poltext, Warszawa.
  • Timofeev R., 2004, Classification and Regression Trees (CART). Theory and Applications, Berlin.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-ce40422d-0787-49cf-9daa-27b155655bed
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.