PL EN


2017 | 17 | 44 | 637-650
Article title

Energy Efficiency for Reinforcing Steel Activities in The Construction of a Business Complex in Mexico

Content
Title variants
PL
Wydajność energetyczna wykorzystania stali zbrojeniowej podczas budowy kompleksu biznesowego w Meksyku
Languages of publication
EN
Abstracts
EN
Much of the energy used in the world is associated with the construction sector, and one of the ways to reduce that energy consumption is to do each constructive process in an energetically efficient way. The aim of this paper is to present results from an energy efficiency program in the construction of a business complex in Hermosillo, Mexico, particularly in the processes of reinforcing steel activities (rebar). Results reveal that appropriate use of equipment and the coordination between engineers and workers help to improve the energy efficiency during the construction phase also reducing material waste. Additionally, attaching the energy efficiency approach to the cleaner production framework is a complicated task due to energy inefficiencies are not easily identified and estimated. Since there is less energy consumption in construction process along the life cycle of buildings compared to operation activities, there is little evidence on energy efficiency studies in that part of the process. Therefore, this paper intends to provide experiences to construction experts in order to have better basis for decisions related to energy efficiency in this industry.
PL
Duża część konsumpcji energii na świecie przypada na sektor budowlany, a jedną z metod redukcji tego zużycia jest przeprowadzenie każdego procesu budowlanego w sposób wydajny energetycznie. Celem artykułu jest przedstawienie wyników programu na rzecz wydajności energetycznej związanego z budową kompleksu biznesowego w Hermosillo w Meksyku, a zwłaszcza z użyciem stali zbrojeniowej (prętów zbrojeniowych). Wyniki wskazują, że właściwe wykorzystanie sprzętu oraz koordynacja pomiędzy inżynierami i pracownikami pomaga poprawić wydajność energetyczną w fazie budowy oraz ograniczyć odpady. Co więcej, włączenie podejścia opartego na wydajności energetycznej w ogólne podstawy czystszej produkcji jest skomplikowanym zadaniem z tego powodu, że niewydajność energetyczna jest trudna do zidentyfikowania i oszacowania. Dlatego też mniejsza konsumpcja energii w procesie budowlanym w całym cyklu życia budynków w porównaniu do działalności produkcyjnej nie odzwierciedla się w dowodach w postaci badań nad wydajnością energetyczną w tej części procesu. Niniejszy artykuł ma na celu zaprezentowanie doświadczenia ekspertów budowlanych, aby wesprzeć proces decyzyjny związany z wydajnością energetyczną w analizowanym przemyśle.
Year
Volume
17
Issue
44
Pages
637-650
Physical description
Dates
published
2017-12-31
Contributors
author
  • University of Sonora, Hermosillo, Sonora, Mexico
  • University of Massachusetts Lowell, Lowell, MA, USA
  • University of Sonora, Hermosillo, Sonora, Mexico
  • University of Sonora, Hermosillo, Sonora, Mexico
  • University of Massachusetts Lowell, Lowell, MA, USA
  • University of Sonora, Hermosillo, Sonora, Mexico
  • University of Sonora, Hermosillo, Sonora, Mexico
  • University of Massachusetts Lowell, Lowell, MA, USA
redactor
References
  • Alsudairi, A.A. (2015). Simulation as a Tool for Assessing the Economical Aspects of Construction Processes. Procedia Engineering 118: 1086–1095.
  • Alwan, Z.; Jones, P., Holgate, P. (2017). Strategic sustainable development in the UK construction industry, through the framework for strategic sustainable development, using Building Information Modelling. Journal of Cleaner Production 140: 349–358.
  • CFE (2017). Tarifas de servicio temporal. México: Comisión Federal de Electricidad. Available at: http://app.cfe.gob.mx/Aplicaciones/CCFE/Tarifas/Tarifas/tarifas_negocio.asp?Tarifa=CMAT&Anio=2017. Accessed 24 June 2017.
  • Chang, R.; Soebarto, V.; Zhao, Z.; Zillante, G. (2016). Facilitating the transition to sustainable construction: China’s policies. Journal of Cleaner Production 131: 534–544.
  • Choi, S.W.; Oh, B.K.; Park, J.S.; Park, H.S. (2016). Sustainable design model to reduce environmental impact of building construction with composite structures. Journal of Cleaner Production 137: 823–832.
  • Chou, J.-S.; Telaga, A.S.; Chong, W.K.; Gibson Jr., G.E. (2017). Early-warning application for real-time detection of energy consumption anomalies in buildings. Journal of Cleaner Production 149: 711–722.
  • Ding, G.K.C. (2007). Sustainable construction — The role of environmental assessment tools. Journal of Environmental Management 86: 451–464.
  • Ganda, F.; Ngwakwe, C.C. (2014). Role of energy efficiency on sustainable development. Environmental Economics 5 (1): 86-99.
  • Kalfa, F.; Kalogirou, N. (2017). Quality Through Sustainable Practices During the Design and Construction Phase- the case of the SNFCC. Procedia Environmental Sciences 38: 781 – 788.
  • Kirimtat. A.; Koyunbaba, B.; Chatzikonstantinou, I.; Sariyildiz, S. (2016). Review of simulation modeling for shading devices in buildings. Renewable and Sustainable Energy Reviews 53: 23–49.
  • Ladenhauf, D.; Battisti, K.; Berndt, R.; Eggeling, E.; Fellner, D.; Gratzl-Michlmair, M.; Ullrich, T. (2015). Computational geometry in the context of building information modeling. Energy and Buildings 115: 78-84.
  • Nordic Innovation (2014). Environmentally Sustainable Construction Products and Materials – Assessment of release and emissions. Oslo: Nordic Innovation.
  • Nowotarski, P.; Pasławski, J.; Matyja, J. (2016). Improving Construction Processes Using Lean Management Methodologies – Cost Case Study. Procedia Engineering 161: 1037–1042.
  • Packer, N. (2011). A Beginner’s Guide to Energy and Power. Stafford: Staffordshire University. Available at: http://www.rets-project.eu/UserFiles/File/pdf/respedia/A-Beginners-Guide-to-Energy-and-Power-EN.pdf. Accessed 23 June 2017.
  • Passer, A.; Wall, J.; Kreiner, H.; Maydl, P.; Höfler, K. (2015). Sustainable buildings, construction products and technologies: linking research and construction practice. The International Journal of Life Cycle Assessment 20: 1–8.
  • Peláez Ramos, M. (2011). El reto de la eficiencia energética en el sector de la construcción. Revista Economía Industrial 385: 91-98.
  • PEMEX (2016). Precio al público de productos petrolíferos. México: Petróleos Mexicanos
  • SEMARNAT (2015). Aviso para el reporte del Registro Nacional de Emisiones. Ciudad de México: Secretaría de Medio Ambiente y Recursos Naturales.
  • Tabassi, A.A.; Argyropoulou, M.; Roufechaei, K.M.; Argyropoulou, R. (2016). Leadership Behavior of Project Managers in Sustainable Construction Projects. Procedia Computer Science 100: 724–730.
  • Tanaka K. (2008). Assessing measures of energy efficiency performance and their application in industry. Paris: OECD/IEA.
  • Ugwu, O.O.; Haupt, T.C. (2007). Key performance indicators and assessment methods for infrastructure sustainability — a South African construction industry perspective. Building and Environment 42: 665–680.
  • UNEP (2004). Cleaner production – Energy efficiency manual. Oxford: United Nations Environment Programme.
  • WBCSD (2009). Energy Efficiency in Buildings: Transforming the Market. Paris: World Business Council for Sustainable Development.
  • Wibowo, M.A.; Elizar, Sholeh, M.N.; Adji, H.S. (2017). Supply Chain Management Strategy for Recycled Materials to Support Sustainable Construction. Procedia Engineering 171: 185–190.
  • Zhang, H.; Zhai, D.; Yang, Y.N. (2014). Simulation-based estimation of environmental pollutions from construction processes. Journal of Cleaner Production 76: 85–94.
  • Zhang, X.; Wang, F. (2016). Assessment of embodied carbon emissions for building construction in China: Comparative case studies using alternative methods. Energy and Buildings 130: 330–340.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.desklight-d139a513-8db6-4425-ba36-181849aaacc8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.