PL EN


2015 | 63 | 2 | 237-261
Article title

Architektura świadomości. Część II: Struktura molekularna i biofizyka pamięci

Authors
Content
Title variants
Architecture of Consciousness. Part Two: Molecular Structure and Biophysics of Memory
Languages of publication
PL
Abstracts
PL
Część II pracy objaśnia molekularne podłoże pamięci w oparciu o założenia Neuro-Elektro-Dynamiki postulowanej przez Aura i Yoga. Wskazano na biofizyczne mechanizmy generacji wspomnień, refleksji i odczuć dzięki efatycznym sprzężeniem synaptycznym, spełniającym wymagania indukowania impresjonów Vadakkana. Wykazano, że działanie mechanizmu selekcyjnego WTA może być dobrym modelem opisującym funkcję przełączania uwagi. Wskazano na relacje między pamięcią roboczą, krótkoterminową i trwałą i ich spójność z molekularnymi procesami zapamiętywania i rozpoznawania wzorców. Wskazano, że trwała pamięć epizodyczna wymaga konwersji sekwencji czasowych sygnałów bottom-up do rozkładu przestrzennego tworzącego impresjony dynamiczne. Odwrotna transformacja tych impresjonów umożliwia przypominanie epizodów z przeszłości. Omówiono znaczenie wrodzonych struktur sieci neuronowych zapewniających dziedziczenie zachowań instynktownych. Struktury te nie wykluczają zachowania plastyczności umysłu umożliwiającej efektywne uczenie.
Part II explains molecular background of the memory based on the assumptions of Neuro-Electro-Dynamic postulated by Aur & Yog. Biophysical mechanism of memory formation was indicated responsible also for senses and reflections through the ephatic inter-postsynaptic functional coupling Which can induce Vadakkan semblions. WTA selective mechanism was proposed as the base for the model of attention switching. Relations between working, short term and permanent memory were indicated and their coherence with molecular memory formation process and pattern recognition. It was shown, permanent episodic memory requires bottom-up signals time sequence conversion to the spatial distribution patterns forming dynamic semblions Past episodes reminding is possible by reciprocal transformation of these semblions. Innate neural network structures was discussed which ensure instinct behavior inheritance. These structure doesn't exclude mind plasticity necessary for effective learning.
Year
Volume
63
Issue
2
Pages
237-261
Physical description
References
  • Abbott L.F., Regehr, W.G. (2004) Synaptic computation, Nature 431 (7010), pp. 796-803.
  • Adleman L.M., (1994) Molecular computation of solutions to combinatorial problems, Science 266 (5187), pp. 1021-1024.
  • Anastassiou, C.A., Montgomery, S.M., Barahona, M., Buzsáki, G. & Koch, C. (2010), The effect of spatially inhomogeneous extracellular electric fields on neurons”. J. Neuroscience. 30, 1925–1936.
  • Araquae A.„Astrocytes process synaptic information”,( 2008) Neuron Glia Biology 4, 3-10.
  • Arshavsky Y.I.,(2006) "The seven sins" of the Hebbian synapse: Can the hypothesis of synaptic plasticity explain long-term memory consolidation? Progress in Neurobiology 80 (3), pp. 99-113.
  • Aur, D., Connolly, C.I., and Jog, M.S, (2005a), Computing spike directivity with tetrodes, Journal of Neuroscience Methods, Volume 149, Issue 1, 30, pp. 57-63.
  • Aur, D., Connolly, C.I., and Jog, M.S, (2005b), Computing Information in Neuronal Spikes, Neural Processing Letters, Volume 23 , Issue 2, Pages: 183 - 199 , 2006.
  • Aur D., Jog, MS, (2006),Building Spike Representation in Tetrodes, Journal of Neuroscience Methods Volume 157, Issue 2 , 30 October Pages 364-373.
  • Aur D, Jog MS, (2007) “Neuronal spatial learning”, Neural Processing Letters, Vol 25, no 1, pp 31,47.
  • Aur Dorian and Jog Mandar, (2010) Neuroelectrodynamics - Understanding The Brain Language , IOS Press,1–235.
  • Aur D, (2010) „Where is the ‘Jennifer Aniston neuron’?”,dostępne na Nature Precedings.
  • Aur D. (2011) Understanding the Physical Mechanism of Transition to Epileptic Seizures, Journal of Neuroscience Methods, Vol. 200, Issue 1, 30 August, Pages 80–85.
  • Bach-y-Rita P. (2004). "Tactile sensory substitution studies.". Annals of New York Academic Sciences, 1013:83–91.
  • Bailey Craig H., Bartisch Dusan , Kandel Eric R. (1996) Toward a molecular definition of long-term memory storage, Proc. Natl. Acad. Sci. USA Vol. 93, pp. 13445–13452, November.
  • Bailey Craig H., Kandel Eric R. Si Kausik (2004)„The Persistence of Long-Term Memory: A Molecular Approach to Self-Sustaining Changes”, Learning-Induced Synaptic Growth, Neuron, Vol. 44, 49–57, September 30.
  • Barnes CA, et al. (1994) LTP saturation and spatial learning disruption: Effects of task variables and saturation levels. J. Neurosci 14:5793–5806.
  • Benson D.L., Colman D.R., Huntley G.W., (2001) Molecules, maps and synapse specificity, Nat. Rev. Neurosci., Volume: 2, pp. 899—909.
  • Berlucchi G, Buchtel HA, (2009) “Neuronal plasticity: historical roots and evolution of meaning”. Exp. Brain Res.;192(3):307-19. January
  • Brodziak Andrzej (2001) „Neurophysiology of the mental image”, Med Sci Monit, 7(3): 534-538.
  • Caporale N, Dan Y. (2008) “Spike timing-dependent plasticity: a Hebbian learning rule”. Annual Rev Neurosci 31:25–46.
  • Costa RP, Sjöström PJ and van Rossum MCW, (2013) “Probabilistic Inference of Short-Term Synaptic Plasticity in Neocortical Microcircuits” - Frontiers in Computational Neuroscience 7:75, 2013.
  • Edelman Gerald M. (1987) “Neural Darwinism: The Theory of Neuronal Group Selection” (Basic Books, New York).
  • Edelman Gerald, Gally Joseph (2001) "Degeneracy and complexity in biological systems". Proceedings of the National Academy of Sciences, USA 98 (24): 13763–13768.
  • Fields R.D., (2006) „Beyond the neuron doctrine”, Scientific American Mind, June/July 17, 20-27.
  • Fields R. Douglas, (2011) „Drugi mózg, Rewolucja w nauce i medycynie”, Prószyński Media, Warszawa.
  • Gelbard-Sagiv, H., Mukamel, R., Harel, M., Malach, R., Fried, I. (2008) Internally generated reactivation of single neurons in human hippocampus during free recall, Science 322 (5898), pp. 96-101.
  • Gerstner W, Kistler WM. (2002a) “Spiking neuron models single neurons, populations, plasticity”. Cambridge, UK: Cambridge University Press.
  • Gerstner, W.; Kistler, W. K.,(2002b) Mathematical Formulations of Hebbian Learning, Biological Cybernetics, vol. 87, num. 5-6, p. 404-415 Springer Verlag.
  • Izhikevich EM. „Resonate-and-fire neurons”, Neural Network,14:883–94. 2001.
  • Jog MS, Aur, D., Connolly CI, Is there a Tipping Point in Neuronal Ensembles during Learning? Neuroscience Letters Volume 412, Issue1 ,22, January 2007, Pages 39-44.
  • Jog M.S and Aur D., A Theoretical Information Processing-Based Approach to Basal Ganglia Function, Advances in Behavioral Biology, 2009, Volume 58, Part 2, 211-222.
  • Kandel E.R., (2000) Cellular mechanisms of learning and the biological basis of individuality, Kandel E.R., Schwartz J.H., Jessel T.M., (Ed.) Principles of Neural Science, 4th ed. 2000, McGraw-Hill, New York. pp. 1247—1279.
  • Kandel E.R., (2001) The molecular biology of memory storage: a dialog between genes and synapses, Biosci. Rep., Volume: 21, 2001, pp. 565—611.
  • Markram Henry, Perin Rodrigo, (2011)”Innate neural assemblies for Lego memory”, Frontiers in Neural Circuits, May 2011, Volume 5, Article 6.
  • Miller KD, Mackay DJC (1994)”The role of constraints in Hebbian learning”. Neural Comput 6:100–126.
  • Milstein J. N. Koch C., (2008) Dynamic Moment Analysis of the Extracellular Electric Field of a Biologically Realistic Spiking Neuron, Vol. 20, No. 8, Pages 2070-2084.
  • McClelland JL, Rumelhart DE. (1988) “Exploration in parallel distributing processing”. Cambridge: Brandford Books, MIT Press.
  • McCulloch, W.S. Pitts W., (1943) “A Logical Calculus of the Ideas Immanent in Nervous Activity,” Bull. Mathematical Biophysics, vol. 7, pp. 115-133.
  • McCulloch W.S., (1965)”Embodiments of Mind”, 2nd edition. Cambridge, Mass.: MIT Press, 1988.
  • Noë A., (2005) “Action in Perception”. Cambridge, MA; The MIT Press.
  • Nowak, L.G., Sanchez-Vives, M.V., McCormick, D.A., (1997) Influence of low and high frequency inputs on spike timing in visual cortical neurons, Cerebral Cortex 7 (6), pp. 487-501, 145.
  • Nuxoll Andrew M. Laird John E.,(2004) “A Cognitive Model of Episodic Memory Integrated With a General Cognitive Architecture”, International Conference on Cognitive Modeling (AAAI).
  • Nuxoll Andrew M. Laird John E., A (2012)”Enhancing Intelligent Agents with Episodic Memory, Cognitive Systems Research”, 2012 (in press), (In Proceedings of the twenty-second AAAI conference on artificial intelligence. Vancouver, BC. 2007) http://faculty.up.edu/nuxoll/pubs/CogSys_NuxollLaird_ver27.pdf.
  • Penrose, R. (1997) „Physics and the mind”, M. Longair (Ed.), The large, the small and the human mind (pp.93–143). Cambridge, England: Cambridge University Press.
  • Perin Rodrigo Berger Thomas K. and Markram Henry,(2011) “A synaptic organizing principle for cortical neuronal groups”, PNAS March 29, vol. 108, no. 13 5419–5424.
  • Runyan CA, Schummers J, Van Wart A, Kuhlman SJ, Wilson NR, Huang ZJ, Sur M.;(2010) “Response features of parvalbumin-expressing interneurons suggest precise roles for subtypes of inhibition in visual cortex”. Neuron 2010 Sep 9;67(5):847-57.
  • Schwartz, J.H., Castellucci, V.F., and Kandel, E.R. (1971). Functioning of identified neurons and synapses in abdominal ganglion of Aplysia in absence of protein synthesis. J. Neurophysiology. 34, 939–953.
  • Song S. Miller, K. D. Abbott, L. F., (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity, Nature Neuroscience , Vol 3; No 9, pages 919-926.
  • Starzyk J. A., He H. (2009)“Spatio-Temporal Memories for Machine Learning: A Long-Term Memory Organization ”, IEEE Trans. on Neural Networks, vol. 20, no. 5, May 2009, pp. 768 - 780.
  • Starzyk J.A. Prasad D.K. (2011) A Computational Model of Machine Consciousness. International Journal of Machine Cosciousness 03, 255.
  • Taylor, J. G. (2007)„CODAM: A neural network model of consciousness," Neural Networks 20(9), 983992.
  • Taylor, J. G. (2009) „Beyond consciousness?" International Journal of Machine Consciousness 1(1), 1121.
  • Todd J. Jay & Marois Rene´, (2004) “Capacity limit of visual short-term memory in human posterior parietal cortex”, Nature |Vol. 428 | 15 April 2004.
  • Tolhurst, D.J., Smyth, D., Thompson, I.D., (2009) The sparseness of neuronal responses in ferret primary visual cortex, Journal of Neuroscience 29 (8), pp. 2355-2370.
  • Tulving, E. (1983). Elements of Episodic Memory. Oxford: Clarendon Press.
  • Walczak, A., Szczepankiewicz A, Ruszczycki B., Magalska A., Zamlynska K., Dzwonek J., Wilczek E., Zybura-Broda K., Rylski M., Malinowska M., Dabrowski M., Szczepinska T., Pawlowski K., Pyskaty M., Wlodarczyk J., Szczerbal I., Switonski M., Cremer M., Wilczynski G. (2013) ”Novel Higher-Order Epigenetic Regulation of the Bdnf Gene upon Seizures”, The Journal of Neuroscience, 6 February 2013, 33(6): 2507-2511.
  • Wang W. , Subagdja B. Tan A.-H. and Starzyk J. A. (2012) “Neural Modeling of Episodic Memory: Encoding, Retrieval, and Forgetting” IEEE Trans. on Neural Networks and Learning Systems, vol. 23, no. 10, Oct. 2012, pp. 1574 - 1586.
  • Wolf C.J. Linden D.E., (2012) “Biological pathways to adaptability – interactions between genome, epigenome, nervous system and environment for adaptive behavior”, Genes, Brain and Behavior, Volume 11, Issue 1, pages 3–28, February 2012.
  • Zbiór artykułów: (2004) „Glial Neuronal Signaling”, wyd. Glenn Hatton, Vladimir Parpura, 1 - 456 p.
  • Yen S-C, Baker J, and Gray C. M., (2007) “Heterogeneity in the Responses of Adjacent Neurons to Natural Stimuli in Cat Striate Cortex”, J. Neurophysiology 97: 1326-1341.
Document Type
Publication order reference
Identifiers
ISSN
0035-7685
YADDA identifier
bwmeta1.element.desklight-d6392253-1612-4e36-8ffb-9dfd00b6f982
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.