2017 | 26 | 4 | 563–581
Article title

Further Reflections on Sentences Saying of Themselves Strange Things

Title variants
Languages of publication
Milne [2005] argued that a sentence saying of itself that it does not have a truthmaker is true but does not have a truthmaker. López de Sa and Zardini [2006] worried that, by parity of reasoning, one should conclude that a sentence saying of itself that it is not both true and short is true but not short. Recently, Milne [2013] and Gołosz [2015] have replied to López de Sa and Zardini’s worry, arguing in different ways that the worry is illfounded. In this paper, I’ll address these replies and argue that they fail to dispel López de Sa and Zardini’s worry, bringing out in the process some broader points concerning the use of self-referential sentences in arguments in philosophy of logic.
Physical description
  • LanCog, Language, Mind and Cognition Research Group, Centro de filosofia, Universidade de Lisboa
  • Asenjo, F., “A calculus of antinomies”, Notre Dame Journal of Formal Logic, 7 (1966): 103–105. DOI: 10.1305/ndjfl/1093958482
  • Barrio, E., and G. Rodríguez-Pereyra, “Truthmaker maximalism defended again”, Analysis, 75 (2015): 3–8. DOI: 10.1093/analys/anu121
  • Clark, M., Paradoxes from A to Z, Routledge, Abingdon, 3rd edition, 2012. DOI: 10.4324/9780203465929
  • Gödel, K., “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I”, Monatshefte für Mathematik und Physik, 38 (1931): 173–198. DOI: 10.1007/BF01700692
  • Gołosz, J., “In defence of an argument against truthmaker maximalism”, Logic and Logical Philosophy, 24 (2015): 105–109. DOI: 10.12775/LLP.2014.018
  • Halbach, V., and A. Visser, “The Henkin sentence”, pages 249–263 in M. Manzano, I. Sain, and E. Alonso (eds.), The Life and Work of Leon Henkin, Birkhäuser, Basel, 2014. DOI: 10.1007/978-3-319-09719-0_17
  • Kaplan, D., and R. Montague, “A paradox regained”, Notre Dame Journal of Formal Logic, 1 (1960): 79–90. DOI: 10.1305/ndjfl/1093956549
  • Kolmogorov, A., “O principe tertium non datur”, Matematičeskij sbornik, 32 (1925): 646–667.
  • Löb, M., “Solution of a problem of Leon Henkin”, The Journal of Symbolic Logic, 20, 2 (1955): 115–118. DOI: 10.2307/2266895
  • López de Sa, D., and E. Zardini, “Does this sentence have no truthmaker?”, Analysis, 66, 2 (2006): 154–157. DOI: 10.1093/analys/66.2.154
  • López de Sa, D., and E. Zardini, “Truthmakers, knowledge and paradox”, Analysis, 67, 3 (2007): 242–250. DOI: 10.1093/analys/67.3.242
  • López de Sa, D., and E. Zardini, “No-no. Paradox and consistency”, Analysis, 71, 3 (2011): 472–478. DOI: 10.1093/analys/anr044
  • MacBride, F., “Truthmakers”, in E. Zalta (ed.), Stanford Encyclopaedia of Philosophy, 2013.
  • Maudlin, T., Truth and Paradox, Oxford University Press, Oxford, 2004. DOI: 10.1093/0199247293.001.0001
  • Milne, P., “Not every truth has a truthmaker”, Analysis, 65, 3 (2005): 221–223. DOI: 10.1093/analys/65.3.221
  • Milne, P., “Omniscient beings are dialetheists”, Analysis, 67, 3 (2007): 250–251. DOI: 10.1093/analys/67.3.250
  • Milne, P., “Not every truth has a truthmaker II”, Analysis, 73, 3 (2013): 473–481. DOI: 10.1093/analys/ant037
  • Rodríguez-Pereyra, G., “Truthmaker maximalism defended”, Analysis, 66, 3 (2006): 260–264. DOI: 10.1093/analys/66.3.260
  • Rosser, J., “Extensions of some theorems of Gödel and Church”, The Journal of Symbolic Logic, 1 (1936): 87–91. DOI: 10.2307/2269028
  • Tarski, A., Pojęcie prawdy w językach nauk dedukcyjnych, Nakładem Towarzystwa Naukowego Warszawskiego, Warsaw, 1933.
  • Zardini, E., “Truth and what is said”, Philosophical Perspectives, 22 (2008): 545–574. DOI: 10.1111/j.1520-8583.2008.00157.x
  • Zardini, E., “Truth without contra(di)ction”, The Review of Symbolic Logic, 4 (2011): 498–535. DOI: 10.1017/S1755020311000177
  • Zardini, E., “Getting one for two, or the contractors’ bad deal. Towards a unified solution to the semantic paradoxes”, pages 461–493 in T. Achourioti, K. Fujimoto, H. Galinon, and J. Martínez (eds.), Unifying the Philosophy of Truth, Springer, Dordrecht, 2015a. DOI: 10.1007/978-94-017-9673-6
  • Zardini, E., “∀ and ω”, pages 489–526 in A. Torza (ed.), Quantifiers, Quantifiers, and Quantifiers: Themes in Logic, Metaphysics, and Language, Springer, Dordrecht, 2015b. DOI: 10.1007/978-3-319-18362-6
  • Zardini, E., “First-order tolerant logics”, The Review of Symbolic Logic, 2016a. Forthcoming.
  • Zardini, E., “Unstable knowledge”, ms, 2016b.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.