Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


2014 | 15 | 3 | 145-158

Article title



Title variants


Languages of publication



W pracy dowodzimy twierdzenia, które wiąże założenie dokładności skal ekwiwalentności (ESE) z symetrycznym czynnikiem dominacji stochastycznej pierwszego rzędu. Dokładniej, niech X i Y będą rozkładami wydatków, odpowiednio, analizowanej grupy gospodarstw domowych i grupy gospodarstw odniesienia. Niech Z oznacza rozkład X skorygowany za pomocą pewnej skali ekwiwalentności. Jeśli spełnione jest założenie ESE, to Z jest stochastycznie indyferentne z X. Jednakże indyferencja stochastyczna (SI) nie implikuje ESE. Oznacza to, że SI jest założeniem słabszym niż ESE. Proponujemy obliczać skale ekwiwalentności na podstawie kryterium SI, gdy ESE nie jest spełnione.
In this paper we prove the theorem, which links the equivalence scale exactness (ESE) assumption with the symmetric factor of the first order stochastic dominance. Namely, let X and Y be the expenditure distributions of an analysed group of households and the reference household group, respectively. Let Z be the X distribution adjusted by an equivalence scale. If the ESE assumption holds then Z will be the first order stochastically indifferent with Y. However, stochastic indifference (SI) does not imply ESE. This means that SI is a weaker assumption than ESE. We propose to calculate equivalence scales based on SI criterion when ESE is violated.








Physical description




  • Katedra Nauk Ekonomicznych, Politechnika Gdańska


  • Davidson R., Duclos J.-Y. (2000) Statistical inference for stochastic dominance and for the measurement of poverty and inequality. Econometrica, 68(6), p. 1435-1464.
  • Fisz M. (1969) Rachunek prawdopodobieństwa i statystyka matematyczna, PWN, Warszawa.
  • Billingsley, P., Probability and Measures, Wiley & Sons, New York,1995.
  • Blackorby, C., Donaldson, D. (1993) Adult-equivalence scales and the economic implementation of interpersonal comparisons of well-being. Choice and Welfare, 10, pp. 335-361.
  • Blundell, R.W., Duncan A, Pendakur K. (1998) Semiparametric estimation of consumer demand. Journal of Applied Econometrics, 13, pp. 435-461.
  • Blundell, R.W., Lewbel A. (1991) The information content of equivalence scales. Journal of Econometrics 150, pp. 49-68.
  • Buhmann, B, Rainwater, L, Schmaus, G, Smeeding, T. (1988) Equivalence scales, well-being, inequality, and poverty: Sensitivity estimates across ten countries using the Luxembourg Income Study (LIS) Database. Review of Income and Wealth, 34, pp. 115-142.
  • Coulter, F.A.E., Cowell, F.A., Jenkins S.P. (1992a) Differences in needs and assessment of income distributions. Bulletin of Economic Research, 44, pp. 77-124.
  • Coulter, F.A.E., Cowell, F.A., Jenkins S.P. (1992b) Equivalence scale relativities and the extent of inequality and poverty. Economic Journal, 102, pp. 1067-1082.
  • Cutler A.E., Katz L.F. (1992) Rising inequality? Changes in the distribution of income and consumption in the 1980s. Economic Review: Papers and Proceedings 82, pp. 546-551.
  • Davidson, R. (2008), Stochastic dominance. The New Palgrave Dictionary of Economics. Second Edition. Eds. Steven N. Durlauf and Lawrence E. Blume. Palgrave Macmillan.
  • Davidson, R, Duclos, J. (2000) Statistical inference for stochastic dominance and for the measurement of poverty and inequality. Econometrica, 68, pp. 1435-1464.
  • Deaton, A., Muellbauer, J. (1980) Economics and Consumer Behaviour, Cambridge Univ. Press., Cambridge.
  • Dickens, R, Fry V, Pashardes, P. (1993) Nonlinearities, aggregation and equivalence scales. Economic Journal, 103, pp. 359-368.
  • Gozalo, P. (1997) Nonparametric bootstrap analysis with implementation to demographic effects in demand functions. Journal of Econometrics, .81, pp. 357-393.
  • Jenkins, S.P., Cowell, F.A. (1994) Parametric equivalence scales and scale relativities. The Economic Journal, 104, pp. 891-900.
  • Kot, S.M. (2012) Ku stochastycznemu paradygmatowi ekonomii dobrobytu., IMPULS, Kraków.
  • Lewbel, A., Household equivalence scales and welfare comparisons. Journal of Public Economics, 39, 377-391, 1989.
  • Lewbel, A. (1997) Consumer demand systems and household equivalence scales. In Handbook of Applied Econometrics, Volume II: Microeconomics, Pesaran, M.H., Schmidt, P. (eds)., Blackwell Publishers Ltd., Oxford.
  • Linton, O., Maasuomi E., Whang Y.J. (2005) Consistent testing for stochastic dominance under general sampling schemes. The Review of Economic Studies, 72, pp. 735-765..
  • OECD (2008) Growing Unequal? Income Distribution and Poverty in OECD Countries. Paris. (www.oecd.org/els/social/inequality / www.oecd.org/els/social/inegalite).
  • Pashardes, P. (1995) Equivalence scales in a rank-3 demand system. Journal of Public Economics, 58, pp.143-158.
  • Pendakur, K. (1999) Estimates and tests of base-independent equivalence scales. Journal of Econometrics, 88, pp. 1-40.
  • Smirnov, N.W. (1939) Sur les ecarts de la courbe de distribution empirique. Comptes Rendus de l’Academie des Sciences Paris, 6, pp. 3-26.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.