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Introduction 
 

Many statistical models involve mixture distributions in some way or other. 
In mixture distributions a population made up of u subgroups, mixed at random 
in proportion to the relative group sizes is considered. The interest lies in some 
random variable X  which is heterogeneous across and homogeneous within the 
subgroups. Due to heterogeneity, X  has a different probability distribution in 
each group, usually assumed to arise from the same parametric family, however, 
with the vector of parameter sΘ  differing across the groups (s). 

An overview of mixture models is given in Titterington et al. [1985] or 
McLachlan and Peel [2000, p. 81-116]. The most popular are multivariate nor-
mal mixture models (Gaussian mixture models). They are used in a lot of differ-
ent areas such as astronomy, biology, economic, marketing or medicine [see i.e. 
Fraley and Raftery 2002, p. 611-631; Wedel and DeSarbo 1995, p. 21-55; Witek 
2010a, p. 615-624; 2010b, p. 63-72]. Since the mixture of multinomial distribu-
tions is applied in the empirical part of this article we present the definition of 
this kind of mixture below. 
 
 
1. The multinomial mixture model – definition 

 
The data of n objects described by categorical variables mll ,,1 K  is consid-

ered. The data can be represented by the vector of objects 
),,1;,,1;,,1;( nilhmjx jijhi KKK ====x  where 1=ijhx  if the object i
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belongs to the category h  of the variable j . The total number of categories is 

given by ∑
=

=
m

j
jll

1

, then the data is defined by the n  by m  matrix. 

In the multinomial mixture model it is assumed that each observation ix  
arises independently from a mixture of multivariate multinomial distributions 
defined by: 
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where: 
sf  – density function of component s, 

ix  – the vector of objects, 

sΘ  – the component specific parameter vector for the density function sf , 
Θ  – the vector of all parameters for the mixture density function, ),( ss ΘΘ τ= , 

sτ  – the prior probability of component s; 
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The sth component of the mixture can be given as: 
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where ),,1;,,1;( jsjhs lhmj KK ==Θ=Θ  and (2) formula is a product of m  
conditionally independent multinomial distributions of parameters sjΘ . 

Banfield and Raftery [1993, p. 803-821] proposed to constrain the 
covariances in the mixture of multivariate normal distributions, which resulted in 
14 Gussian mixture models. Similarly, Celeux and Govaert [2008] imposed 
some constraints on the parameters of the mixture of multinomial distributions  
(Θ ) and received 5 multinomial models. 

The basic idea of this proposition is to impose the vector of components on 
distributions parameters ),,( 1 jsjlsjsj ΘΘ= KΘ  to take the form 

),,,,,,( sjsjsjsjsj ββγββ KK , with sjsj βγ > . Since ∑
=

=Θ
jl

h
sjh

1
1, we have: 
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 ,1)1( =+− sjsjjl γβ  (3) 

 
 ).1/()1( −−= jsjsj lγβ   (4) 
 

The constraint sjsj βγ >  can be finally written as jsj l/1>γ . Then the vec-
tor sjΘ  can be split into the following parameters: 

− ),,( 1 jsjlsjsj aa K=a , where 1=sjha  if h is equal sjγ , 0=sjha  otherwise, 

− sjsj γε −= 1  corresponds to the probability that the data ix arising from the 
sth component, such that .1),( ≠jsijhx  

In other words, the multinomial distribution associated with the jth variable 
of the sth component is reparameterized by a center sja  and the dispersion pa-
rameter sjε , which allows a interpretation similar to the center and the variance 

matrix used for continuous data in the Gaussian mixture models. 
The relationship between the initial and new distribution parameters can be 

written as: 
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Equation (2) can be for ),,1,( mjsjs K== aa  and ),,1,( mjsjs K== εε  

rewritten as: 
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This model will be denoted as ][ sjε , in the following. On the basis of (6), 

three other models can be deduced: 
− ][ sε  – the model where sjε  is independent of the variable j, 

− ][ jε  – the model where sjε  is independent of the sth component, 

− ][ sjε  – the model where sjε  is independent both of the variable j and the sth 

component. 
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The most general model will also be denoted as ][ sjhε . The number of the 

parameters associated with each models is given in Table 1, where 0=σ  in the 
case of equal prior probabilities and 1−= uσ  when prior probabilities are dif-
ferent for each class. 

 

Table 1 
 

The number of parameters of the 5 multinomial models 
 

Model Number of parameters 

][ε  1+σ  
][ jε  m+σ  

][ sε  u+σ
][ sjε  um+σ

][ sjhε  ∑
=

−+
m

j
jlu

1
)1(σ  

 
Source: Celeux, Govaert [2008, p. 35]. 

 
 

2. Parameter estimation and model selection 
 

The parameters of the mixture of multinomial models are usually estimated 
by maximum likelihood using the Expectation-Maximization (EM) algorithm 
[Dempster et al. 1977, p. 1-38]. Each EM iteration consists of two steps – an  
E-step and an M-step. In the M-step (for the a posteriori probabilities, obtained 
in E-step) new parameters of maximum likelihood given by (7) are obtained: 
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where 1=isz  if ix  belongs to group s or 0=isz  otherwise. Maximum likeli-
hood estimators for each of the five models presented in Table 1 are given be-
low. We adopt the notation: 
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and ),( jsh  for the value which minimizes the difference given in (8). 
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For convenience, we assume that ),( jssjhsj ee = . 

1. Model ][ sjhε : 

 ssjhsjh ne /1−=Θ . (9) 

2. Model ][ sjε : 
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3. Model ][ sε : 
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4. Model ][ jε : 
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5. Model ][ε : 
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The M steps for each of five models ( ][ sjhε , ][ sjε , ][ sε , ][ jε , ][ε ) could 

also be written using the new parameterization sa  and sε . Then it is assumed 
that: 
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The E and M steps are repeated until the likelihood improvement falls un-
der a pre-specified threshold or a maximum number of iterations is reached [see 
Wang 1994 for more details]. 

In order to select the optimal clustering model several measures have been 
proposed [see i.e. McLachlan and Peel 2000, p. 81-116]. Four information crite-
ria are available in mixtools package of R: BIC (Bayesian Information Cri-
terion), AIC (Akaike Information Criterion), ICL (Integrated Completed Likeli-
hood) and CAIC (Consistent Akaike Information Criterion). The performance of 
some of these criteria was compared by Biernacki et al. [1999, p. 49-71] and 
Bozdogan [2000, p. 62-91]. In general, BIC was found to be consistent under 
correct specification of the component densities [Kass and Raftery 1995, p. 928-
-934; Keribin 2000, p. 49-66] and has given good results in a range of applica-
tions [i.e. Fraley and Raftery 2002, p. 611-631; Stanford and Raftery 2000, 
p. 601-609]. The criteria used in further analysis are defined: 

 
 sssiis vMypAIC 2),ˆ,(log2 −= Θx , (16) 

 )log(),ˆ,(log2 nvMypBIC sssiis −= Θx , (17) 

 )log(
2

),ˆ,(log2 n
v

MypICL s
ssiis += Θx ,  (18) 

 )1)(log(),ˆ,(log2 +−= nvMypCAIC sssiis Θx , (19) 

 
where: ),ˆ,(log ssii Myp Θx  – is the maximized loglikelihood for the model

sM , sv  is the number of parameters to be estimated in that model, n is the num-
ber of observations in the data. 

The first term in criteria measures the goodness-of-fit, whereas the second 
term penalizes model complexity. 
 
 
3. Example 

 
In this example the data collected by the Marketing Department of Univer-

sity of Economics in Katowice in 2008 were analysed. The main goal of this 
sampling survey was to recognize students’ attitudes to the Silesia region and its 
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promotion. The survey comprised different areas of the Silesia region: central, 
the Dabrowa Basin, south, north, south-west. The respondents studied at: 
− the University of Economics in Katowice, 
− the University of Economics in Katowice (Rybnik Centre), 
− the University of Economics in Katowice (Bielsko Campus), 
− the Katowice School of Economics (Katowice Piotrowice), 
− the Katowice School of Finance and Banking, 
− the Czestochowa University of Technology, 
− the Czestochowa School of Linguistics, 
− the Academy of Fine Arts in Katowice, 
− the Higher School of Applied Sciences in Ruda Slaska. 

Students were asked 12 questions about their background and their attitude 
to Silesia, its culture, tradition and promotion. 

There were 627 polls collected. The main goal of the analysis was to find 
clusters with similar students’ attitudes to our region. The mixture of multinomi-
al distributions were applied. All computations in this paper were done in 
mixtools package of R and SPSS software. Some results of mixtools 
package of R are presented in Figure 1. 
 

> x.new<-makemultdata(slask, cuts = 2) 
> multmixmodel.sel(x.new$y, comps = c(1,2),  

epsilon = 1e-03) 
number of iterations= 114 
1 2 Winner 
AIC -3244.819 -1764.462 2 
BIC -3247.039 -1771.123 2 
CAIC -3247.539 -1772.623 2 
ICL -3247.039 -1770.603 2 
Loglik -3243.819 -1761.462 2 

 
Fig. 1. The results of mixtools package of R 
 

The optimal number of the mixture components was chosen using four dif-
ferent information criteria. Figure 1 shows that the optimal number of compo-
nents is 2 (for each of criterion). We estimated parameters of two components 
using EM algorithm. The mixture of multinomial distribution methodology out-
lined before yields two groups of students consisting of 255 and 372 students re-
spectively. 
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The first group comprises students who feel a strong bond with Silesia. For 
question: “Do you feel ties with Silesia?”, 58% chose answer “yes”, 32% –  
“rather yes”. There were no negative answer. Students are also rather intent on 
staying in Silesia: 61% of students are going to stay in Silesia, 34% have not de-
cided yet and 5% are going to leave. The students in this group like Silesian tra-
ditions. The question “Do you like Silesian traditions?” elicited 37% “yes” an-
swers and 46% “rather yes” answers. As far as the Polish Silesian dialect is 
concerned, the majority of students like it (38% “yes” answers and 28% “rather 
yes” answers). However, 33% of students do not like it too much (the percentage 
of students who chose answers: “neither yes, neither no”). High pollution is per-
ceived as the main disadvantage of living in the Silesia area (64% “yes” and 
28% “rather yes” answers). Nearly three-quarters of students polled believe in 
the improvement of the Silesia’s image. However, as many as 75% of students 
did not observe any Silesia’s promotion. There were different opinions concern-
ing Silesia’s promotion in our country: 38% think that the Silesia region should 
be promoted as a whole, 24% claim that the separate subregions should be pro-
moted and 38% think that the separate subregions should be promoted but under 
the common logo of the Silesia region. Silesia is perceived as a region attractive 
for tourists by 42% of students, 26% think the opposite and 32% do not have any 
opinion. We can say that students of this group have a positive attitude towards 
Silesia. We can suppose that this kind of attitude and the sense of belonging to 
this region stem from students’ background. 70% of students of this group were 
brought up here and their parents come from here, 21% of students have been 
living in Silesia for years, but their parents come from another part of Poland, 
only 8% of students polled came here just to study. 

Quite a different attitude towards Silesia can be observed in the second 
group of students. The ties with Silesia are quite weak, i.e. only 39% of students 
feel strong ties with Silesia, 27% feel some kind of bond, 20% of the respond-
ents feel no ties with Silesia, 13% haven’t even thought about it. Only 46% of 
students have decided to stay here in the future, as many as 17% are intent on 
leaving and 37% haven’t taken any decision on this issue yet. The students  
belonging to this group do not like Silesian traditions very much: 23% chose 
“yes” answers, 31% chose “rather yes” answers, 16% do not like the traditions at 
all. The last part of this group do not have any opinion (answer “neither yes, nor 
no”). The vast majority of this group do not like the Silesian dialect either. The 
question “Do you like the Silesian dialect?” elicited 30% “no” answers and 20% 
“rather no” answers. The positive attitude to the infrastructure development is 
almost at the same level in both groups. The air pollution in this region is also 
very negatively perceived in the second group of students. As far as the im-
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provement of the image of the Silesia region is concerned, 5% less than in the 
first class believe that it is at all possible. Most of the students have not observed 
the new promotional campaign (64%), but there are also 12% of students who 
like it very much (16% have no opinion). There are also different opinions about 
the way of promoting the Silesia region, similarly to the first group. The vast 
majority of students (35%) think that the separate subregions should be promot-
ed but under the common Silesian logo. A large part of this group perceives Sile-
sia as unattractive for tourists (35%), 34.7% of students do not have any opinion. 
For 40% of the respondents, Silesia is as an industrial area, comprising an area 
of the former Katowice voivodship, for 28% of students Silesia is a region as-
sociated with the current area of this part of Poland. However, as many as 12% 
less than in the first group of students do perceive the Dabrowa Basin as a sep-
arate part of Silesia. We think that the reason of this split approach is that 
many people looking for a job came and settled down in this part of Silesia 
many years ago. 

We think that the definitely skeptical attitude to the Silesia, its customs, dia-
lects, tradition and different Silesian borders in this group is connected with stu-
dents’ and their parents’ background. 59% of students and their parents come 
from Silesia, 29% of parents come from other regions of Poland and 12% of stu-
dents came only to study here. 

 

 

Conclusions 
 

We have shown the use of the mixture models in the classification of stu-
dents studying in different parts of Silesia. The mixture of multinomial models 
analysis yields two groups of students. The first group comprises students who 
feel strong ties with Silesia. The bond with Silesia in the second group of stu-
dents is quite weak. 

The mixture model analysis has confirmed that students’ and their parents’ 
background has the influence on those two different attitudes. The difference can 
be especially observed among students living/studying in the Dabrowa Basin. 
Administratively, they feel Silesian. They live in this region, but do not have the 
roots here, so they do not necessarily identify with everything that Silesia is 
connected with. 
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MIESZANKI ROZKŁADÓW WIELOMIANOWYCH – ANALIZA  
POSTAW STUDENTÓW WOBEC WOJEWÓDZTWA ŚLĄSKIEGO 

 

Streszczenie 
 

Mieszanki rozkładów są stosowane wówczas, gdy zbiór obserwacji charakteryzuje 
się nadmiernym rozproszeniem. W literaturze najczęściej są spotykane mieszanki roz-
kładów normalnych (model-based clustering). W referacie zostaną przedstawione mie-
szanki rozkładów wielomianowych oraz wyniki ich zastosowań do podziału studentów 
o podobnych postawach wobec województwa śląskiego (jego tradycji, kultury, możliwo-
ści rozwoju itd.). 

Badania zostaną przeprowadzone za pomocą pakietu mixtools programu kom-
puterowego R. 

 


