PL EN


2012 | 3/2012 (38) | 104-123
Article title

Zastosowanie zbiorów przybliżonych do wykrywania reguł zachowania konsumentów na potrzeby wieloagentowego modelu symulacyjnego

Content
Title variants
EN
Application of rough sets to identify the behavior rules of consumer for the purposes of multi-agent simulation model
Languages of publication
PL
Abstracts
PL
W artykule przedstawiono możliwość zastosowania teorii zbiorów przybliżonych w procedurze tworzenia wieloagentowego modelu zachowania konsumentów. Omówiono symulację wieloagentową, metody gromadzenia i przetwarzania danych na potrzeby modelowania wieloagentowego oraz teorię zbiorów przybliżonych w kontekście wykrywania reguł zachowań konsumentów. Ponadto zaprezentowano przykładowy model symulacyjny zachowania konsumentów na rynku urządzeń elektrycznych, zbudowany z zastosowaniem proponowanej procedury.
EN
This paper presents the possibility of application of the rough set theory in procedure of building a multi-agent model of consumer behavior. Discussed are: multi-agent simulation, methods of gathering and processing data and rough set theory in the context of identification of market behavior rules of consumers. In addition to these, the paper presents an example of a simulation model of consumer behavior in the electrical appliances market which was built with applying the proposed research procedure.
Keywords
Year
Issue
Pages
104-123
Physical description
Dates
published
2012-09-30
References
  • Adjali, I., Dias, B. i R. Hurling 2005. Agent Based Modeling of Consumer Behavior, Proceedings of the 2005 North American Association for Computational Social and Organizational Science Annual Conference, Notre Dame: University of Notre Dame, http://www.casos.cs.cmu.edu/events/conferences/2005/conference_papers.php, dostęp: 14.03.2012.
  • Ben Said, L., Bouron, T. i A. Drogoul 2002. Agent-based Interaction Analysis of Consumer Behavior, Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: part 1, New York: ACM, s. 184–190.
  • Bieniasz, S. 2006. Techniki symulacji agentowej w zastosowaniu do badania procesów cieplnych, Kraków: Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki AGH, s. 13–14, http://winntbg.bg.agh.edu.pl/rozprawy/9711/full9711.pdf, dostęp: 10.03.2012.
  • Bonabeau, E. 2002. Agent-based Modeling, Methods and Techniques for Simulating Human Systems. Proceedings of the National Academy of Sciences of the United States of America, nr 3 (99), s. 7280–7287, http://www.pnas.org/content/99/suppl.3/7280.full2002, DOI: 10.1073/pnas.082080899.
  • Brannon, E.L., Ulrich, P.V., Anderson, L.J. i A.B. Presley 2001. Agent-based Simulation of the Consumer’s Apparel Purchase Decision. National Textile Center Annual Report, http://www.ntcresearch.org/pdf-rpts/AnRp01/I98-A09-A1.pdf, dostęp: 14.03.2012.
  • Buchta, C. i J. Mazanec 2001. SIMSEG/ACM – A Simulation Environment for Artificial Consumer Markets. Working Paper, nr 79, Vienna: Vienna University of Economics and Business Administration, http://epub.wu.ac.at/254/1/document.pdf, dostęp: 14.03.2012.
  • Burns, R. 2000. Introduction to Research Methods, London: Sage, DOI: 10.1332/030557393782453916.
  • Cao, J. 1999. Evaluation of Advertising Effectiveness Using Agent-based Modelling and Simulation, Proceedings of 2nd UK Workshop of SIG on Multi-Agent Systems (UKMAS), Bristol, http://stuff.mit.edu/~caoj/pub/doc/jcao_c_adver.pdf, dostęp: 14.03.2012.
  • Casti, J. 1997. Would-be Worlds, How Simulation Is Changing The World of Science, New York: Wiley.
  • Challet, D. i A. Krause 2006. What Questions to Ask in Order to Validate an Agent-based Model. Report of the 56th European Study Group with Industry, s. J1–J9, http://www.maths-in-industry.org/miis/107/1/Unilever-ABM-Report.pdf, dostęp: 14.03.2012.
  • Chaochang, C. 2002. A Case-based Customer Classification Approach for Direct Marketing. Expert Systems with Applications, nr 2 (22), s. 163–168.
  • Collings, D., Reeder, A.A., Adjali, I., Crocker, P. i M.H. Lyons 1999. Agent Based Customer Modeling. Computing in Economics and Finance, nr 1352, http://econpapers.repec.org/paper/scescecf9/1352.htm, dostęp: 14.03.2012.
  • Collings, D., Reeder, A.A., Adjali, I., Crocker, P. i M.H. Lyons 2000. Agent Based Customer Modeling: Individuals Who Learn from Their Environment, Proceedings of the 2000 Congress on Evolutionary Computation, La Jolla, s. 1492–1497, DOI: 10.1109/CEC.2000.870830.
  • Cui, N. 2009. A Rough-set Based Approach to Predict Consumers’ Brand Preference. International Workshop on Intelligent Systems and Applications, Wuhan, DOI: 10.1109/IWISA.2009.5072671.
  • Delre, S.A., Jager, W., Bijmolt, T.H.A. i M.A. Janssen 2010. Will It Spread or Not? The Effects of Social Influences and Network Topology on Innovation Diffusion. Journal of Product Innovation Management, nr 2 (27), s. 267–282, DOI: 10.1111/j.1540-5885.2010.00714.x.
  • Frank, A.U., Bittner, S. i M. Raubal 2001. Spatial and Cognitive Simulation with Multi-agent Systems, w: D.R. Montello (red.) Spatial Information Theory – Foundations of Geographic Information Science, s. 124–139. Berlin–Heidelberg: Springer Verlag, DOI: 10.1007/3-540-45424-1_9.
  • Furaiji, F. i B. Wąsikowska 2012. Badanie preferencji zakupowych kobiet i mężczyzn metodą zbiorów przybliżonych. Handel Wewnętrzny, w druku.
  • Goldenberg, J., Han, S., Lehmann, D.R. i J.W. Hong 2009. The Role of Hubs in the Adoption Process. Journal of Marketing, nr 2 (73), s. 1–13, DOI: 10.1509/jmkg.73.2.1.
  • Goldenberg, J., Libai, B., Moldovan, S. i E. Muller 2007. The NPV of Bad News. International Journal of Research in Marketing, nr 24, s. 186–200, DOI: 10.1016/j.ijresmar.2007.02.003.
  • Goldenberg, J., Libai, B. i E. Muller 2010. The Chilling Effect of Network Externalities. International Journal of Research in Marketing, nr 1 (27), s. 4–15, DOI: 10.1016/j.ijresmar.2009.06.006.
  • Hill, R. i A. Watkins 2007. A Simulation of Moral Behavior within Marketing Exchange Relationships. Journal of the Academy of Marketing Science, nr 35, s. 417–429, DOI: 10.1007/s11747-007-0025-5.
  • Hill, R. i A. Watkins 2009a. A Simulation of Business-to-Business Decision Making in a Relationship Marketing Context. Industrial Marketing Management, nr 8 (28), s. 994–1005.
  • Hill, R. i A. Watkins 2009b. The Profit Implications of Altruistic Versus Egoistic Orientations for Business-to-Business Exchanges. International Journal of Research in Marketing, nr 1 (26), s. 52–59, DOI: 10.1016/j.ijresmar.2008.07.007.
  • Hyuang, C. 2010. 4G Mobile Phone Consumer Preference Predictions by Using the Rough Set Theory and Flow Graphs, Phuket: Technology Management for Global Economic Growth (PICMET).
  • Jager, W. 2006. Simulating Consumer Behaviour: A Perspectiv, w: A. Faber, K. Frenken i A.M. Idenburg (red.) Groningen Environmental Policy and Modeling in Evolutionary Economics, s. 111–136. Netherlands: Environmental Assessment Agency, http://www.rivm.nl/bibliotheek/rapporten/550033001.pdf, dostęp: 15.03.2012.
  • Jager, W., Janssen, M.A. i C.A.J. Vlek 1999. Consumats in a Commons Dilemma: Testing the Behavioural Rules of Simulated Consumers, COV Report No. 99-01, University of Groningen: Centre for Environment and Traffic Psychology, http://clivespash.org/ speer/simpaper.pdf, dostęp: 15.03.2012.
  • Janssen, M.A. i W. Jager 2003. Simulating Market Dynamics: The Interactions of Consumer Psychology and Structure of Social Networks. Artificial Life, nr 9, s. 343–356.
  • Journal of Product Innovation Management 2011, Special Issue on Agent-based Modeling of Innovation Diffusion, nr 2 (28).
  • Kaczmarczyk, S. 2003. Badania marketingowe. Metody i techniki, Warszawa: Polskie Wydawnictwo Ekonomiczne.
  • Kędzior, Z. i in. 2005. Badania rynku. Metody, zastosowania, Warszawa: Polskie Wydawnictwo Ekonomiczne.
  • Kuhn, J.R., Courtney, J.F., Morris, B. i E.R. Tatara 2010. Agent-based Analysis and Simulation of the Consumer Airline Market Share for Frontier Airlines. Knowledge-Based Systems, nr 8 (23), s. 875–882, DOI: 10.1016/j.knosys.2010.06.002.
  • Roozmanda, O., Ghasem-Aghaeea, N., Hofstedeb, G.J., Nematbakhsha, M.A., Baraania, A. i T. Verwaart 2011. Agent-based Modeling of Consumer Decision Making Process Based on Power Distance and Personality. Knowledge-Based Systems, nr 7 (24), s. 1075–1095, DOI: 10.1016/j.knosys.2011.05.001.
  • Rutkowski, L. 2005. Metody i techniki sztucznej inteligencji, Warszawa: Wyd. Naukowe PWN.
  • Schenk, T.A., Löffler, G. i J. Rauh 2007. Agent-based Simulation of Consumer Behavior in Grocery Shopping on a Regional Level. Journal of Business Research, nr 60, s. 894–903, DOI: 10.1016/j.jbusres.2007.02.005.
  • Schwaiger, A. i B. Stahmer 2003. SimMarket: Multiagent-based Customer Simulation and Decision Support for Category Management. Lecture Notes in Artificial Intelligence, nr 2831, s. 74–84, DOI: 10.1007/978-3-540-39869-1_7.
  • Shah, S., Roy, R. i A. Tiwari 2006. Technology Selection for Human Behaviour Modelling in Contact Centres, Cranfield: Cranfield University, s. 2–13.
  • Shaikh, N.I., Ragaswamy, A. i A. Balakrishnan 2005. Modelling the Diffusion of Innovations Using Small World Networks, Philadelphia: Penn State University.
  • Shibata, J. 2010. Analysis of Unplanned Purchase Rule Based on Rough Set, Los Angeles: Computers and Industrial Engineering (CIE), DOI:10.1109/ICCIE.2010.5668266.
  • Siebers, P.O. i U. Aickelin 2008. Introduction to Multi-agent Ssimulation, w: F. Adam i P. Humphreys (red.) Encyclopedia of Decision Making and Decision Support Technologies, s. 554–564. Pennsylvania: Idea Group Publishing, DOI: 10.4018/978-1-59904-843-7.ch062.
  • Toubia, O., Goldenberg, J. i R. Garcia 2008. A New Approach to Modeling the Adoption of New Products: Aggregated Diffusion Models. MSI Reports: Working Papers Series, nr 08-001, s. 65–76.
  • Twomey, P. i R. Cadman 2002. Agent-based Modelling of Customer Behaviour in the Telecoms and Media Markets. Information, nr 1 (4), s. 56–63, http://www2.econ.iastate.edu/tesfatsi/ACERetailCustomerModeling.pdf, dostęp: 14.03.2012, DOI: 10.1108/14636690210426640.
  • Ulbinaitė, A. i Y. Le Moullec 2010. Towards an ABM-based Framework for Investigating Consumer Behaviour in the Insurance Industry. Ekonomika, nr 2 (89), s. 97–101.
  • Venables, M. i U. Bilge 1998. Complex Adaptive Modelling at J Sainsbury: The SimStore Supermarket Supply Chain Experiment, Warwick: Business Process Resource Centre,
  • Warwick University, http://www.psych.lse.ac.uk/complexity/Seminars/1998/report-98mar.htm, dostęp: 14.03.2012.
  • Vindigni, G., Janssen, M.A. i W. Jager 2002. Organic Food Consumption. A Multitheoretical Framework of Consumer Decision Making. British Food Journal, nr 8 (104), s. 624–642, DOI: 10.1108/00070700210425949.
  • Watts, D.J. 2002. A Simple Model of Global Cascades on Random Networks. Proceeding of the National Academy of Sciences, nr 99, s. 5766–5771, DOI: 10.1073/pnas.082090499.
  • Watts, D.J. i P.S. Dodds 2007. Influentials, Networks and Public Opinion Formation. Journal of Consumer Research, nr 4 (34), s. 441–458, DOI: 10.1086/518527.
  • Wilkinson, I. i L. Young 2002. On Cooperating: Firms, Relations, Networks. Journal of Business Research, nr 55, s. 123–132, DOI: 10.1016/S0148-2963(00)00147-8.
  • Witek, J. i K. Nermend (red.) 2008. Zachowania konsumenta w świetle badań ankietowych i symulacyjnych, Szczecin: Uniwersytet Szczeciński, s. 5–7.
  • Wohltorf, J. i S. Albayrak 2003. An Agent-based Decision Support System for the Introduction of Next Generation Mobile Services, Berlin: DAI-Labor, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.202.9099, dostęp: 14.03.2012.
  • Wooldridge, M. 1999. Intelligent Agents, w: G. Weiss (red.) Multiagent Systems – A Modern Approach to Distributed Artificial Intelligence, s. 27–77. Cambridge: MIT Press.
  • Wooldridge, M. 2002. An Introduction to Multi-agent Systems, New York: Wiley.
Document Type
Publication order reference
Identifiers
ISSN
1644-9584
YADDA identifier
bwmeta1.element.desklight-ef4fd724-a559-4e42-ac58-74f98471f7a2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.