PL EN


2013 | 3 | 1 | 54-69
Article title

An analysis of the opportunities and challenges connected with Big Data

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
This paper is devoted to the analysis of the Big Data phenomenon and the opportunities and challenges connected with it. It is composed of seven parts. In the first, a general overview of the situation related to the transformation of the economy from the industrial into the post-industrial one is given. In this context, the growing role of data and information as well as the rapid increase in the new socio-economic realities and the notion of Big Data are discussed. In the next section, the notion of Big Data is defined and the main sources of growth of data are characterized. In the following part of the paper the most significant opportunities and possibilities linked with Big Data are presented and discussed. The next part is devoted to the characterization of tools, techniques and the most useful data in the context of Big Data initiatives. In the following part of the paper the success factors of Big Data initiatives are analyzed. The penultimate part of the paper is focused on the analysis of the most important problems and challenges connected with Big Data. In the final part of the paper, the most significant conclusions and suggestions are offered.
Year
Volume
3
Issue
1
Pages
54-69
Physical description
Contributors
author
  • Ph.D., Department of Enterprise Organization and Management, Faculty of Economy and Management, Opole University of Technology, Poland
References
  • 1. Barton D., Court D. (2012), Making advanced analytics work for you, “Harvard Business Review”, October.
  • 2. Bean R. et al. (2012), How Big Data is Different, “Sloan Management Review”, Fall.
  • 3. Brynjolfsson et al. (2011), Strength in Numbers: How Does Data-Driven Decisionmaking Affect Firm Performance?, http://ssrn.com/abstract= 1819486, accessed 24.02.2013.
  • 4. Bughin J. et al. (2010), Clouds, big data, and smart assets: Ten tech-enabled business trends to watch, “McKinsey Quarterly”, https://www.mckinseyquarterly.com/article_print.aspx? L2=20&L3= 75&ar=2647, accessed 12.02.2013.
  • 5. Castells M. (2007), Społeczeństwo sieci, Wydawnictwo Naukowe PWN, Warszawa.
  • 6. Chui M. et al. (2010), The Internet of Things, “McKinsey Quarterly”, https://www.mckinseyquarterly.com/article_print.aspx?L2=4&L3= 116&ar=2538, accessed 05.02.2013.
  • 7. Commission Of The European Communities (2009), Internet of Things - An action plan for Europe, http://eur-lex.europa.eu/ LexUriServ/LexUriServ.do?uri=COM:2009:0278:FIN:EN:PDF, accessed 27.11.2012.
  • 8. Capgemini (2012): The Deciding Factor: Big Data & Decision Making, http://www.capgemini.com/insights-and-resources/by-publication/ the-deciding-factor-big-data-decision-making/?d=6C800 B16-E3AB-BC55-00F4-5411F5DC6A8C, accessed 18.02.2013.
  • 9. Davenport T., Harris J. (2007), Competing on Analytics, Harvard Business School Press, Boston.
  • 10. Davenport T., Patil D. (2012): Data scientist: The sexiest job of the 21st century, “Harvard Business Review”, October.
  • 11. Ericsson (2012), Ericsson Mobility Report, http://hugin.info/1061/R/ 1659597/537300.pdf, accessed 03.12.2012.
  • 12. Ferguson R. (2012), It’s All About the Platform: What Walmart and Google Have in Common, “Sloan Management”, http://sloanreview.mit.edu/article/its-all-about-the-platform-what-walmart-and-google-have-in-common/, accessed 05.12.2012.
  • 13. Fowler G. (2012): Facebook: One Billion and Counting, “The Wall Street Journal”, http://online.wsj.com/article/SB100008723963963904436354045 78036164027386112.html, accessed 04.10.2012.
  • 14. Gantz J., Reinsel D. (2011), Extracting Value from Chaos, “IDC”, http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf], accessed 14.02.2013.
  • 15. Hampton K. et al. (2012), Why most Facebook users get more than they give, “Pew Internet & American Life Project”, http://pewinternet.org/~/media//Files/Reports/2012/PIP_Facebook% 20users_2.3.12.pdf, accessed 03.02.2012.
  • 16. Harrysson M. (2012), How ‘social intelligence’ can guide decisions, “McKinsey Quarterly”, https://www.mckinseyquarterly.com/ article_print.aspx?L2=21&L3=37&ar=3031, accessed 29.10.2012.
  • 17. HP (2012): Big security for big data, http://www.hpenterprisesecurity.com/collateral/whitepaper/BigSecurityforBigData0213.pdf, accessed 12.02.2013
  • 18. Kaplan R., Norton D. (2002), Strategiczna karta wyników, Wydawnictwo Naukowe PWN, Warszawa.
  • 19. Leadership Council for Information Advantage (2011), Big Data: Big Opportunities to Create Business Value, http://poland.emc.com/ microsites/cio/articles/big-data-big-opportunities/LCIA-BigData-Opportunities-Value.pdf, accessed 17.01.2013.
  • 20. Marchand D., Peppard J. (2013), Why IT fumbles analytics, “Harvard Business Review”, January-February.
  • 21. McAfee A., Brynjolfsson E. (2012), Big data: The management revolution, “Harvard Business Review”, October.
  • 22. McKinsey Global Institute (2011), Big data: The next frontier for innovation, competition, and productivity, http://www.mckinsey.com/ mgi/publications/big_data/pdfs/MGI_big_data_full_report.pdf, accessed 13.05.2011.
  • 23. NewVantage Partners (2012): Big Data Executive Survey: Creating a Big Data Environment to Accelerate Business Value, http://newvantage.com/ wp-content/uploads/2012/12/NVP-Big-Data-Survey-Accelerate-Business-Value.pdf, accessed 12.01.2013.
  • 24. NewVantage Partners (2012), Big Data Executive Survey: Themes & Trends, http://newvantage.com/wp-content/uploads/2012/12/NVP-Big-Data-Survey-Themes-Trends.pdf, accessed 12.01.2013.
  • 25. Nonaka I., Takeuchi H. (2000), Kreowanie wiedzy w organizacji, Poltext, Warszawa.
  • 26. Olavsrud T. (2013), How to Use Big Data to Make Faster and Better Business Decisions, “Computerworld”
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-f169e371-bb4f-40c3-b477-62a5968697cd
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.