2016 | 2(137) | 79–99
Article title

Test podłużnej niezmienności modelu podwójnego czynnika na przykładzie Kwestionariusza poczucia integracji rówieśniczej

Title variants
Testing the longitudinal invariance of the bifactor model using the example of The Perceived Peer Integration Questionnaire
Languages of publication
W badaniach podłużnych zmiany badanego konstruktu mogą być interpretowane jedynie pod warunkiem spełnienia założenia o podłużnej niezmienności pomiarowej. Celem artykułu jest systematyczne testowanie podłużnej niezmienności pomiarowej modelu podwójnego czynnika z użyciem równań strukturalnych. Badany konstrukt zmierzono Kwestionariuszem poczucia integracji rówieśniczej (PIR) w trzech falach ogólnopolskiego badania szkolnych uwarunkowań efektywności kształcenia (N = 4349). Wyniki wskazują, że PIR jest narzędziem rzetelnym, substancjalnie jednowymiarowym, o strukturze podwójnego czynnika, niezmiennym konfiguralnie, metrycznie i skalarnie, ale nie ściśle. Można więc przyjąć, że w kolejnych falach badania układ czynników, wielkość ładunków czynnikowych i progów nie różnią się znacząco od siebie, ale rzetelność pomiaru jest różna: niższa w klasie 3 niż w klasach 5–6. Artykuł ukazuje także konsekwencje niespełnienia założeń związanych z niezmiennością pomiarową dla wyników analiz statystycznych.
In longitudinal data, changes in constructs over time can only be sensibly interpreted if the measured variables are assumed to be invariant across time. This article uses the empirical example of The Perceived Peer Integration Questionnaire (PPI) and three rounds of the nationwide study on School conditions of education effectiveness (N = 4349) to illustrate the use of structural equation modeling to systematically test the measurement invariance of the bifactor model across time. The results prove that the PPI questionnaire is a reliable tool; it is substantially one-dimensional, with a bifactor structure, a longitudinally invariant measurement: configural, metric and scalar, but not strict. We can therefore assume that even though the factor patterns, size of factor loadings and thresholds do not differ significantly in successive editions of the study, the level of reliability of the measurement cannot be considered invariant over time. A lower level of measurement reliability was recorded for grade 3 than for grades 5 or 6. The article also shows the consequences of ignoring the assumptions relating to longitudinal invariance on the results of the statistical analysis.
Physical description
  • Instytut Badań Edukacyjnych
  • Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246.
  • Billiet, J. B. i McClendon, M. J. (2000). Modeling acquiescence in measurement models for two balanced sets of items. Structural Equation Modeling: A Multidisciplinary Journal, 7(4), 608–628.
  • Bonifay, W. E., Reise, S. P., Scheines, R. i Meijer, R. R. (2015). When are multidimensional data unidimensional enough for structural equation modeling? An evaluation of the DETECT multidimensionality index. Structural Equation Modeling: A Multidisciplinary Journal, 22(4), 504–516.
  • Borsboom, D. (2006). The attack of the psychometricians. Psychometrika, 71(3), 425–440.
  • Briggs, S. R. i Cheek, J. M. (1986). The role of factor analysis in the development and evaluation of personality scales. Journal of Personality, 54(1), 106–148.
  • Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: Guilford Press.
  • Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36(1), 111–150.
  • Byrne, B. M. (2012). Structural equation modeling with Mplus: basic concepts, applications, and programming. New York: Routledge Academic.
  • Byrne, B. M., Shavelson, R. J. i Muthén, B. (1989). Testing for the equivalence of factor covariance and mean structures: the issue of partial measurement invariance. Psychological Bulletin, 105(3), 456–466.
  • Chen, F. F., West, S. i Sousa, K. (2006). A comparison of bifactor and second-order models of quality of life. Multivariate Behavioral Research, 41(2), 189–225.
  • Chen, F. F., Hayes, A., Carver, C. S., Laurenceau, J.-P. i Zhang, Z. (2012). Modeling general and specific variance in multifaceted constructs: comparison of the bifactor model to other approaches. Journal of Personality, 80(1), 219–251.
  • Cole, D. A., Jacquez, F. M. i Maschman, T. L. (2001). Social origins of depressive cognitions: a longitudinal study of self-perceived competence in children. Cognitive Therapy and Research, 25(4), 377–395.
  • Cole, D. A., Maxwell, S. E., Arvey, R. i Salas, E. (1993). Multivariate group comparisons of variable systems: MANOVA and structural equation modeling. Psychological Bulletin, 114(1), 174–184.
  • DiStefano, C., Zhu, M. i Mîndrilă, D. (2009). Understanding and using factor scores: considerations for the applied researcher. Practical Assessment, Research i Evaluation, 20(14), 1–11.
  • Dolata, R. (red.). (2014). Czy szkoła ma znaczenie? Analiza zróżnicowania efektywności nauczania na pierwszym etapie edukacyjnym (t. 1). Warszawa: Instytut Badań Edukacyjnych.
  • Dolata, R., Grygiel, P., Jankowska, D. M., Jarnutowska, E., Jasińska-Maciążek, A., Karwowski, M., Modzelewski, M. i Pisarek, J. (2015). Szkolne pytania. Wyniki badań nad efektywnością nauczania w klasach IV–VI. Warszawa: Instytut Badań Edukacyjnych.
  • Ebesutani, C., Drescher, C. F., Reise, S. P., Heiden, L., Hight, T. L., Damon, J. D. i Young, J. (2012a). The importance of modeling method effects: resolving the (uni)dimensionality of the loneliness questionnaire. Journal of Personality Assessment, 94(2), 186–195.
  • Ebesutani, C., Drescher, C. F., Reise, S. P., Heiden, L., Hight, T. L., Damon, J. D. i Young, J. (2012b). The Loneliness Questionnaire–Short Version: An evaluation of reverse-worded and non-reverse-worded items via item response theory. Journal of Personality Assessment, 94(4), 427–437.
  • Galanaki, E. P. i Kalantzi-Azizi, A. (1999). Loneliness and social dissatisfaction: its relation with children’s self-efficacy for peer interaction. Child Study Journal. Pobrano z
  • Gibbons, R. D., Bock, R. D., Hedeker, D., Weiss, D. J., Segawa, E., Bhaumik, D. K., … Stover, A. (2007). Full-information item bifactor analysis of graded response data. Applied Psychological Measurement, 31(1), 4–19.
  • Gignac, G. E. (2008). Higher-order models versus direct hierarchical models: g as superordinate or breadth factor? Psychology Science, 50(1), 21–43.
  • Grygiel, P., Humenny, G., Rębisz, S., Bajcar, E. i Świtaj, P. (2014). Peer Rejection and perceived quality of relations with schoolmates among children with ADHD. Journal of Attention Disorders. doi: 10.1177/1087054714563791
  • Grygiel, P., Humenny, G., Świtaj, P., Rębisz, S. i Anczewska, M. (2014). Between isolation and loneliness: social networks and perceived integration with peers of children diagnosed with ADHD in regular classrooms. W: N. Popov, C. Wolhuter, K. Skubic Ermenc, G. Hilton, J. Ogunleye i O. Chigisheva (red.), Education’s role in preparing globally competent citizens (s. 303–310). Sofia: Bulgarian Comparative Education Society.
  • Haeberlin, U., Moser, U., Bless, G. i Klaghofer, R. (1989). Integration in die schulklasse: fragebogen zur erfassung von dimensionen der integration von schülern: FDI 4-6. Bern–Stuttgart: Verlag Paul Haupt.
  • Humenny, G. i Grygiel, P. (2015a). Poza ścisłą jedno- i wielowymiarowość. Struktura czynnikowa skali samotności de Jong Gierveld wśród dzieci. W: A. Pokropek (red.), Modele cech ukrytych w badaniach edukacyjnych, psychologii i socjologii. Teoria i zastosowania (s. 400–424). Warszawa: Instytut Badań Edukacyjnych.
  • Humenny, G. i Grygiel, P. (2015b). Wielowymiarowa struktura latentna w perspektywie analizy czynnikowej. W: A. Pokropek (red.), Modele cech ukrytych w badaniach edukacyjnych, psychologii i socjologii. Teoria i zastosowania (s. 130–165). Warszawa: Instytut Badań Edukacyjnych.
  • Jobe-Shields, L., Cohen, R. i Parra, G. R. (2011). Patterns of change in children’s loneliness: trajectories from third through fifth grades. Merrill-Palmer Quarterly, 57(1), 25–47.
  • Kail, R. V. (2010). Human development: a life-span view (wyd. 5). Australia–Belmont: Wadsworth Cengage Learning.
  • Ladd, G. W. i Burgess, K. B. (1999). Charting the relationship trajectories of aggressive, withdrawn, and aggressive/withdrawn children during early grade school. Child Development, 70(4), 910–929.
  • Little, T. D. (1997). Mean and covariance structures (MACS) analyses of cross-cultural data: practical and theoretical issues. Multivariate Behavioral Research, 32(1), 53–76.
  • Little, T. D. (2013). Longitudinal structural equation modeling. New York: Guilford Press.
  • Little, T. D., Preacher, K. J., Selig, J. P. i Card, N. A. (2007). New developments in latent variable panel analyses of longitudinal data. International Journal of Behavioral Development, 31(4), 357–365.
  • Lubke, G. H., Dolan, C. V., Kelderman, H. i Mellenbergh, G. J. (2003). Weak measurement invariance with respect to unmeasured variables: an implication of strict factorial invariance. British Journal of Mathematical and Statistical Psychology, 56(2), 231–248.
  • Maes, M., Van den Noortgate, W., Vanhalst, J., Beyers, W. i Goossens, L. (2015). The Children’s Loneliness Scale: factor structure and construct validity in Belgian children. Assessment. doi: 10.1177/1073191115605177
  • Malloy, T. E., Sugarman, D. B., Montvilo, R. K. i Ben-Zeev, T. (1995). Children’s interpersonal perceptions: a social relations analysis of perceiver and target effects. Journal of Personality and Social Psychology, 68(3), 418–426.
  • Malloy, T. E., Yarlas, A., Montvilo, R. K. i Sugarman, D. B. (1996). Agreement and accuracy in children’s interpersonal perception: a social relations analysis. Journal of Personality and Social Psychology, 71(4), 692–702.
  • Marsh, H. W., Hau, K.-T. i Grayson, D. (2005). Goodness of fit evaluation in structural equation modeling. W: A. Maydeu-Olivares, J. J. McArdle i R. P. McDonald (red.), Contemporary psychometrics: a festschrift for Roderick P. McDonald (s. 275–340). Mahwah: Erlbaum.
  • Marsh, H. W., Morin, A. J. S., Parker, P. D. i Kaur, G. (2014). Exploratory structural equation modeling: an integration of the best features of exploratory and confirmatory factor analysis. Annual Review of Clinical Psychology, 10(1), 85–110.
  • McDonald, R. P. (1981). The dimensionality of tests and items. British Journal of Mathematical and Statistical Psychology, 34(1), 100–117.
  • Meade, A. W., Johnson, E. C. i Braddy, P. W. (2008). Power and sensitivity of alternative fit indices in tests of measurement invariance. Journal of Applied Psychology, 93(3), 568–592.
  • Mellenbergh, G. J. (1994). Generalized linear item response theory. Psychological Bulletin, 115(2), 300–307.
  • Meredith, W. (1964). Notes on factorial invariance. Psychometrika, 29(2), 177–185.
  • Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika, 58(4), 525–543.
  • Millsap, R. E. (2011). Statistical approaches to measurement invariance. New York: Psychology Press.
  • Morin, A. J. S., Marsh, H. W. i Nagengast, B. (2013). Exploratory structural equation modeling. W: G. R. Hancock i R. O. Mueller (red.), Structural equation modeling: a second course (wyd. 2, s. 395–436). Charlotte: Information Age Publishing.
  • Muthén, L. K. i Muthén, B. O. (2012). Mplus user’s guide (wyd. 7). Los Angles: Muthén i Muthén.
  • Quay, L. C. (1992). Personal and family effects on loneliness. Journal of Applied Developmental Psychology, 13(1), 97–110.
  • Quinn, H. O. (2014). Bifactor models, explained common variance (ECV), and the usefulness of scores from unidimensional item response theory analyses. Chapel Hill: University of North Carolina.
  • Raykov, T. i Marcoulides, G. A. (2011). Introduction to psychometric theory. New York: Routledge.
  • Reise, S. P., Bonifay, W. E. i Haviland, M. G. (2013). Scoring and modeling psychological measures in the presence of multidimensionality. Journal of Personality Assessment, 95(2), 129–140.
  • Reise, S. P., Moore, T. M. i Haviland, M. G. (2010). Bifactor models and rotations: exploring the extent to which multidimensional data yield univocal scale scores. Journal of Personality Assessment, 92(6), 544–559.
  • Reise, S. P., Moore, T. i Maydeu-Olivares, A. (2011). Target rotations and assessing the impact of model violations on the parameters of unidimensional item response theory models. Educational and Psychological Measurement, 71(4), 684–711.
  • Reise, S. P., Morizot, J. i Hays, R. D. (2007). The role of the bifactor model in resolving dimensionality issues in health outcomes measures. Quality of Life Research, 16(S1), 19–31.
  • Reise, S. P., Scheines, R., Widaman, K. F. i Haviland, M. G. (2013). Multidimensionality and structural coefficient bias in structural equation modeling: a bifactor perspective. Educational and Psychological Measurement, 73(1), 5–26.
  • Reise, S. P., Waller, N. G. i Comrey, A. L. (2000). Factor analysis and scale revision. Psychological Assessment, 12(3), 287–297.
  • Reise, S. P., Widaman, K. F. i Pugh, R. H. (1993). Confirmatory factor analysis and item response theory: two approaches for exploring measurement invariance. Psychological Bulletin, 114(3), 552–566.
  • Saris, W. E., Satorra, A. i Veld, W. M. van der (2009). Testing structural equation models or detection of misspecifications? Structural Equation Modeling: A Multidisciplinary Journal, 16(4), 561–582.
  • Schmitt, T. A. (2011). Current methodological considerations in exploratory and confirmatory factor analysis. Journal of Psychoeducational Assessment, 29(4), 304–321.
  • Schweizer, K. i Schreiner, M. (2010). Avoiding the effect of item wording by means of bipolar instead of unipolar items: an application to social optimism. European Journal of Personality, 24(2), 137–150.
  • Steiger, J. H. (1990). Structural model evaluation and modification: an interval estimation approach. Multivariate Behavioral Research, 25(2), 173–180.
  • Stout, W. (1987). A nonparametric approach for assessing latent trait unidimensionality. Psychometrika, 52(4), 589–617.
  • Stout, W. (1990). A new item response theory modeling approach with applications to unidimensionality assessment and ability estimation. Psychometrika, 55(2), 293–325.
  • Szumski, G. (2010). Wokół edukacji włączającej: efekty kształcenia uczniów z niepełnosprawnością intelektualną w stopniu lekkim w klasach specjalnych, integracyjnych i ogólnodostępnych. Warszawa: Wydawnictwo Akademii Pedagogiki Specjalnej.
  • Szumski, G. i Karwowski, M. (2012). Funkcjonowanie psychospołeczne uczniów z lekką niepełnosprawnością intelektualną na tle uczniów sprawnych intelektualnie – znaczenie formy kształcenia i płci. Ruch Pedagogiczny, LXXXIII(3), 33–55.
  • Szumski, G. i Karwowski, M. (2014). Psychosocial Functioning and school achievement of children with mild intellectual disability in Polish special, integrative, and mainstream schools: social functioning and school achievement. Journal of Policy and Practice in Intellectual Disabilities, 11(2), 99–108.
  • Ten Berge, J. M. F. i Sočan, G. (2004). The greatest lower bound to the reliability of a test and the hypothesis of unidimensionality. Psychometrika, 69(4), 613–625.
  • Thompson, B. (2004). Exploratory and confirmatory factor analysis: understanding concepts and applications (wyd. 1). Washington: American Psychological Association.
  • Tucker, L. R. i Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38(1), 1–10.
  • Vandenberg, R. J. i Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3(1), 4–70.
  • Widaman, K. F., Ferrer, E. i Conger, R. D. (2010). Factorial invariance within longitudinal structural equation models: measuring the same construct across time. Child Development Perspectives, 4(1), 10–18.
  • Yu, C. (2002). Evaluating cutoff criteria of model fit indices for latent variable models with binary and continuous outcomes. Los Angeles: University of California.
  • Yuan, K.-H. i Bentler, P. M. (2006). Mean comparison: manifest variable versus latent variable. Psychometrika, 71(1), 139–159.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.