PL EN


2013 | 159 | 82-98
Article title

Wpływ redukcji szumu losowego metodą najbliższych sąsiadów na wyniki prognoz otrzymanych za pomocą największego wykładnika Lapunowa

Content
Title variants
EN
The Effect of the Reduction Random Noise by the Method of Nearest Neighbors on Forecasting Results Obtained Using the Largest Lyapunov Exponent
Languages of publication
PL
Abstracts
EN
In this paper has been researched the effect of random noise reduction on the accuracy of forecasts of economic time series obtained using the largest Lyapunov exponent method (LEM). The aim of the article was to compare the prediction errors obtained by LEM for the series before and after the random noice reduction and the time series filtred by models ARMA. The nearest neighbors method was used to reduce random noise in economic time series.
Year
Volume
159
Pages
82-98
Physical description
Contributors
References
  • Cao L., Soofi A. (1999): Nonlinear Deterministic Forecasting of Daily Dollar Exchange Rates. "International Journal of Forecasting", Vol. 15, s. 421-430.
  • Casdagli M. (1989): Nonlinear Prediction of Chaotic Time Series. "Physica D", Vol. 53, s. 335-356.
  • Eckmann J.P., Ruelle D. (1985): Ergodic Theory of Chaos and Strange Attractors. "Reviews of Modern Physics", Vol. 57, No. 3.
  • Guégan D., Leroux J. (2009): Forecasting Chaotic Systems: The Role of Local Lyapunov Exponents. "Chaos, Solitons & Fractals", Vol. 41, s. 2401-2404.
  • Kantz H. (1994): A Robust Method to Estimate the Maximal Lyapunov Exponent of a Time Series. "Physical Letters A", Vol. 185(1), s. 77-87.
  • Kantz H., Schreiber T. (2004): Nonlinear Time Series Analysis. Cambridge University Press, Cambridge.
  • Kennel M.B., Brown R., Abarbanel H.D.I. (1992): Detecting Embedding Dimension for Phase Space Reconstruction Using a Geometrical Construction. "Physical Review A", 45.
  • Lorenz E.N. (1969): Atmospheric Predictability as Revealed by Naturally Occurring Analogues. J. Atmos. Sci., 26, s. 636-646.
  • Miśkiewicz-Nawrocka M. (2012): Zastosowanie wykładników Lapunowa do analizy ekonomicznych szeregów czasowych. Wydawnictwo Uniwersytetu Ekonomicznego, Katowice.
  • Nowiński M. (2007): Nieliniowa dynamika szeregów czasowych. Wydawnictwo Akademii Ekonomicznej, Wrocław.
  • Oseledec V.I. (1968): A Mulitiplicative Ergodic Theorem. Lyapunov Characteristic Numbers for Dynamical System. "Trans. Moscow Math. Soc.", 19, s. 197-231.
  • Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S. (1980): Geometry from a Time Series. "Physical Review Letters", Vol. 45, s. 712-716.
  • Rosenstein M.T., Collins J.J. et al. (1993): A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets. "Physica D", Vol. 65, s. 117-134.
  • Takens (1981): Detecting Strange Atractors in Turbulance. W: Lecture Notes in Mathematics. Eds. D.A. Rand, L.S. Young. Springer Verlag, Berlin.
  • Zawadzki H. (1996): Chaotyczne systemy dynamiczne. Elementy teorii i wybrane zagadnienia ekonomiczne. Wydawnictwo Akademii Ekonomicznej, Katowice.
  • Zhang J., Lam K.C., Yan W.J., Gao H., Li Y., (2004): Time Series Prediction using Lyapunov Exponents in Embedding Phase Space. "Computers and Electrical Engineering" 30, s. 1-15.
Document Type
Publication order reference
Identifiers
ISSN
2083-8611
YADDA identifier
bwmeta1.element.desklight-f2b68c0f-879a-44b7-9a14-5c9baf8c2cfb
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.