Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2015 | 2 (48) | 44-52

Article title

Regresja logistyczna dla danych symbolicznych interwałowych

Authors

Content

Title variants

EN
Logistic regression for interval-valued symbolic data

Languages of publication

PL

Abstracts

EN
When dealing with real data situation we often have a binary (biomial, dichoto-mous) dependent variable. As the linear probability model is not such a good solution in such a situation there is a need to use nonlinear models. A quite good solution for such a sit-uation is the logistic regression model. The paper presents an adaptation of linear regression model when dealing with symbolic interval-valued variables. Four approaches poposed by de Souza et. al [2011] how to apply such variables are presented. In the empirical part re-sults obtained with the application of artificial and real data sets are shown. The best results are obtained for midpoint and bounds (joint estimation) methods.

Contributors

author

References

  • Alexandre L.A., Campilho A.C., Kamel M., 2001, On combining classifiers using product and sum rules, Pattern Recogintion Letters, vol. 22, issue 12, s. 1283-1289.
  • Bock H.-H., Diday E. (red.), 2000, Analysis of Symbolic Data. Explanatory Methods for Extracting Statistical Information from Complex Data, Springer Verlag, Berlin-Heidelberg.
  • Billard L., Diday E., 2006, Symbolic Data Analysis. Conceptual Statistics and Data Mining, John Wiley & Sons, Chichester.
  • de Souza R.M.C.R., Queiroz D.C.F, Cysneiros F.J.A., 2011, Logistic regression-based pattern classi-fiers for symbolic interval data. Pattern Analysis and Applications, vol. 14, issue 3, s. 273-282.
  • Diday E., Noirhomme-Fraiture M., 2008, Symbolic Data Analysis. Conceptual Statistics and Data Mining, Wiley, Chichester.
  • Dudek A., 2004, Tworzenie obiektów symbolicznych z baz danych, Prace Naukowe Akademii Eko-nomicznej we Wrocławiu nr 1021, s. 107-114.
  • Dudek A., 2013, Metody analizy danych symbolicznych w badaniach ekonomicznych, Wyd. Uniwer-sytetu Ekonomicznego we Wrocławiu, Wrocław.
  • Gatnar E., Walesiak M. (red.), 2011, Analiza danych jakościowych i symbolicznych z wykorzystaniem programu R, C.H. Beck, Warszawa.
  • Gruszczyński M. (red.), 2010, Mikroekonometria. Modele i metody analizy danych indywidualnych, Wolters Kulwer Polska, Warszawa.
  • Hosmer D.W., Lemeshow S., Sturdivant R.X., 2013, Applied logistic regression, John Wiley & Sons, Chichester.
  • Ichino M., Yaguchi H., 1994, Generalized Minkowski metrics for mixed feature-type data analysis, IEEE Transactions on Systems, Man and Cybernetics, vol. 24, no. 4, s. 698-708.
  • Menard S., 2002, Applied logistic regression, second edition, Sage Publishing, Thousand Oaks, Cali-fornia.
  • Noirhomme-Fraiture M., Brito P., 2011, Far beyond the classical data models: Symbolic data analy-sis, Statistical Analysis and Data Mining, vol. 4, issue 2, s. 157-170.
  • Silva A.P.D., Brito P., 2006, Linear discriminant analysis for interval data, Computational Statistics, vol. 21, issue 2, s. 289-308.
  • Smith T.J., McKenna C.M, 2013, A comparison of logistic regression pseudo R2 indices, Multiple Linear Regression Viewpoints, vol. 39(2), s. 17-26.
  • Walesiak M., Dudek A., 2014, The clusterSim package, www.r-project.org.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-fe68e67e-5b2f-45ba-bdcf-03e8367ed5e9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.