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Abstract. In this note we derive the famous formula of  F. Chen, Z. Drezner, J.K. Ryan and 

D. Simchi-Levi [2000a] for the bullwhip effect measure in a simple two-stage supply chain 

under the assumption that demands constitute autoregressive structure of order 1. Our 

approach is a little different than in Chen et. al [2000a] and therefore we obtain the formula 

as an equality unlike Chen et. al [2000a], where they have it as a lower bound. Moreover, 

we analyze the bullwhip effect measure formula and in some cases we have different 

conclusions than in Chen et. al [2000a]. 
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1. Introduction 

The bullwhip effect (the Forrester effect) was recognized by Forrester 

[1958] in the middle of the twentieth century. The term ‘bullwhip effect’ 

was coined by Procter & Gamble’s management. This phenomenon appears 

in supply chains as the variance amplification in replenishment orders if one 

moves up in a supply chain. It is considered harmful because of its conse-

quences which are (see e.g. [Buchmeister et al. 2008]): excessive inventory 

investment, poor customer service level, lost revenue, reduced productivity, 

more difficult decision-making, sub-optimal transportation, sub-optimal 

production etc. In the current state of research, typical five main causes of 

the bullwhip effect are considered (see e.g. [Lee, Padmanabhan, Whang 

1997a; 1997b]): demand forecasting, non-zero lead time, supply shortage, 

order batching and price fluctuation. To decrease the variance amplification 

in a supply chain (i.e. to reduce the Forrester effect) we need to identify all 
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the factors causing the bullwhip effect and to quantify their impact on the 

effect. In the recent paper of Michna and Nielsen [2013], another cause of 

bullwhip is indicated, that is lead time forecasting in the case of stochastic 

lead times. Moreover Michna and Nielsen [2013] claim that  demand signal 

processing and  lead time signal processing are equally important causes of 

the bullwhip effect. Many papers have studied the influence of different 

methods of demand forecasting on the Forrester effect such as simple mov-

ing average, exponential smoothing, and minimum-mean-squared-error 

forecasts when demands are independent identically distributed or constitute 

integrated moving-average, autoregressive process or autoregressive-

moving average (see: [Graves 1999; Lee, So, Tang 2000; Chen et. al 2000a; 

2000b]). Few articles have investigated the impact of stochastic lead times 

on the bullwhip effect (see [Duc, Luong, Kim 2008; Kim et al. 2006; Do et al. 

2014; Michna, Nielsen 2013; Michna, Nielsen, Nielsen 2013; 2014; Nielsen, 

Michna, Do 2014). Moreover, Michna and Nielsen [2013] is the only paper 

that considers lead time forecasting, and its impact on bullwhip is expressed 

quantitatively. In this article we assume that demands constitute autoregres-

sive structure of order 1 and lead time is constant. Additionally, demands 

are predicted using the simple moving average method. Finally we redis-

cover the famous formula of F. Chen, Z. Drezner, J.K. Ryan and D. Simchi-

Levi [2000a] . In our approach we obtain it as an equality, unlike the result 

of Chen et. al [2000a] where they obtain a lower bound. We discuss this 

difference and analyze the bullwhip effect measure formula. 

2. Supply chain model with moving average forecasting method 

We will model a supply chain with two stages, that is one retailer and 

one supplier. We will assume that the retailer observes demands Dt (usually 

t denotes a number of a time period that is a day or a week and Dt is a de-

mand during a period of the same length). We will assume that  t t
D




 

constitutes a stationary sequence of random variables with EDt = µD and 
2

t DD Var , and a generic random variable for demands will be denoted by 

D. More precisely, demands constitute the first-order autoregressive process 

 1 ,t t tD D      (1) 

where µ > 0 and |ρ| < 1 and  t t





 is a sequence of independent identically 

distributed random variables such that Et = 0 and Vart = σ
2
. It is easy to 

notice that  



The bullwhip effect in the AR(1) demand structure 

 
55 

EDt = µD = 
1




 and 

2
2

2
.

1
t DD





 


Var  

Moreover we assume that the lead times are deterministic and are equal to 

L. This is rather an unrealistic assumption in many supply chains but it is 

acceptable in the first approach to the bullwhip problem. Thus the lead time 

demand at the beginning of period t is defined as follows  

 
1

1 1

0

... .
L

L

t t t t L t i

i

D D D D D


   



       (2)  

The lead time demand is the quantity which is necessary to place an order. 

Using eq. (1) one can show  

  
1

0

1 .
k

k k i

t D t k t i

i

D D    


 



      (3)  

If t iD   denotes the forecast for a demand during the period t + i at the be-

ginning of period t (that is after i periods), then employing the moving 

average forecasting method with the prediction horizon n we get 

 1

1

n

t i t kn

k

D D 



    (4)  

where Dt−k  k = 1, 2, ... are demands which have been observed by the retail-

er until the beginning of period t. Thus it is natural to define the forecast for 

a lead time demand as follows  

 
1

1

0 1

.
L nL

t t i t kn

i k

D D L D


 

 

      (5)  

Moreover, in our model the retailer applies a base stock policy that is a 

simple order-up-to-level inventory policy. Let St be the inventory position at 

the beginning of period t (later an order is placed). If the order-up-to-level 

policy is employed then St is determined in the following way 

 ,L

t t tS D z    (6)  

where  

  
2

L L
t t tD D  Var   (7)  

is the variance of the forecast error for the lead time demand and z is the 

normal z-score that specifies the probability that demand is fulfilled by the 

on-hand inventory and it can be found based on a given service level. In 
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practice the term 
tz  has to protect from large deviations of demands about  

L

tD . The definition of 
2

t  in this paper differs from the definition in Chen 

et. al [2000a]. They use more practical and feasible definition of lead time 

deviation, that is  

    
22

1

1

, , ,
t

n
L

t i t in

k

C L n D D   



    (8)  

which is an estimation of (7) and C(L, ρ, n) is a constant depending on L, ρ, 

n (see [Chen et. al 2000a]). In practice we do not avoid the estimation of (7) 

but for theoretical reasons we use 
2

t  defined in (7) because it simplifies 

calculations and is equivalent to the assumption z = 0, that is the safety 

loading is zero. Therefore we get an equality unlike Chen et. al [2000a] (see 

Theorem 1 below) where they obtain it as a lower bound (for z = 0 their 

bound is tight). This means that the estimation of lead time demand devia-

tion increases the order variance. Thus using the order-up-to-level policy, 

the order quantity qt placed at the beginning of period t is  

 qt = St − St−1 + Dt−1.  (9)  

Our main purpose is to find Varqt and then to calculate the following bull-

whip effect measure  

/
.

/

t t

t t

q q
BM

D D


Var E

Var E
 

Proposition 1. The variance of the forecast error for the lead time de-

mand 
2

t  defined in (7) does not depend on t.  

This easily follows from the stationarity of the sequence  .
L

L
tt

t

D D




   

Since the variance of the forecast error for the lead time demand is in-

dependent of t we have from equations (6) and (9) that 

  

       

1 1

1 1 1 1

1 1

1

1 1

0

1

1 1 1 1 ,

L L

t tt t

n n

L L
t k t k t t t nn n

k k

n
n n n kL L L

D t n t kn n n

k

q D D D

L L
D D D D D

n n

D     

 

      

 



   



  

     

        
 

 



 (10) 

where in the last equality we used formula (3). 
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It is easy to notice that EDt = Eqt, thus we can derive the exact form of the 

bullwhip effect measure. 

Theorem 1. The measure of the bullwhip effect has the following form 

  
2

2

2 2
1 1 .nt

t

q L L
BM

D n n


 
     

 

Var

Var
 (11) 

Proof. By formula (10) we get 

 

 

 

 

2 2 1
2 2

1

0

2 2 2
2

2

2 2

2

2

1 1

1
1 1

1

1 1 1

2 2
1 1 ,

n
n n k

t t n

k

n
n n

n n

n

L L
q D

n n

L L
D

n n

L L L
D D

n n n

L L
D

n n

   


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

 





 



   
         

   
          

    
         

    

  
     

  

Var Var

Var

Var Var

Var

 

which gives the thesis of the theorem.  

Formula (11) is the well-known result of Chen et. al [2000a]. To our 

knowledge it is the first result which quantifies the bullwhip effect as the 

quotient of variances. 

3. Analysis of the bullwhip effect measure and conclusions 

We get the famous result of Chen et al. [2000a] but in their paper the above 

formula is a lower bound for the bullwhip effect measure. This is caused by 

the estimation (8) of t and confirms that the forecasting (estimation) of 

any parameter when placing an order is the main cause of the variance 

amplification. We need to explain that the lack of forecasting, that is with-

out using any method (hit or miss), is also a forecast but the worst one and 

this should amplify the order variance most of all. Thus we can claim that 

the estimation of the safety loading is also a cause of the bullwhip effect and 

then the effect is at least as in (11).  

Unlike the analysis in Chen et al. [2000a], we have different conclu-

sions for even and odd n in the formula. More precisely, if n is large then 

term ρ
n
 does not contribute much in the bullwhip effect measure even for |ρ| 

close to one. If n is small and ρ is close to negative one it does matter if n is 
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odd or even. We can explain this in the following way, that is an even num-

ber of demands employed in the prediction to place an order dampens order 

variability because they are negatively correlated and for small even n they 

reduce pairwise. Thus we can conclude that for small n and negatively 

correlated demands, an even number of demands taken in the simple mov-

ing average prediction reduces the bullwhip effect, that is the effect has to 

be smaller than in the case of an odd number of demands taken in the pre-

diction of demand. Although this reduction of bullwhip can cause the in-

crease of the stock level variability which yields a poor customer service 

level.  

It seems that the best circumstances to manage the bullwhip problem is 

the case when demands are positively correlated and the correlation is close 

to one ρ ≈ 1 (but ρ < 1 ), then the effect will be negligible if we simply take 

the last demand to predict demands (n = 1). Similarly, we can proceed if 

demands are negatively correlated and the correlation is close to negative 

one ρ ≈ −1 (ρ > −1). Then the best choice for the prediction horizon of 

demands is n = 2, but in this situation as we noticed before we can observe 

another insufficiency in supply chains that is the increase of the stock level 

variability. 

Another interesting case we can observe when n is large, which means 

that the number of past demand observations taken into the simple average 

method converges to infinity. In this case the effect disappears which means 

that the bullwhip effect measure goes to one. In the work of Michna and 

Nielsen [2013], stochastic lead times are considered which are predicted 

using the simple moving average method with the delay parameter m of 

prediction. Then large n does not eliminate the effect because lead time 

forecasting still causes the effect (see Theorem 1 of Michna and Nielsen 

[2013]). The bullwhip effect is also eliminated if L = 0, that is the lead time 

is zero (see eq. (11)). However this is obvious and intuitive because the 

orders are realized immediately and demands are fulfilled on-line and no 

storehouse is necessary. Obviously this is not possible in practice. In the 

article of Michna and Nielsen (2013), the demands are independent and 

identically distributed and lead times are also independent and identically 

distributed. The formulas in Michna and Nielsen [2013] and (11), coincide 

if the lead time is deterministic (in [Michna,  Nielsen 2013] and ρ = 0 

in (11). 
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