Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2015 | 3 | 2 | 1-10

Article title

Plant occurrence on burning coal waste – a case study from the Katowice-Wełnowiec dump, Poland

Title variants

Languages of publication

EN

Abstracts

EN
Coal-waste dumps superimposed on former rubbish dump frequently undergo selfheating and selfignition of organic matter dispersed in the waste. The special conditions for plant growth generated as a result have been investigated since 2008 on the municipal dump reclaimed with coal wastes in Katowice-Wełnowiec, Poland. The plants observed most frequently where heating has occurred are Sisymbrium loeselii, Artemisia vulgaris, Sonchus arvensis, Chenopodium album, Achillea millefolium, Cirsium arvense, Amaranthus retroflexus, Atriplex nitens and Solanum nigrum. Some new, rare species such as Portulaca oleracea, first noticed in 2011, may be added. Most of encroaching species are annual, alien archeophytes and neophytes. Native species are mainly perennials. The majority of these species show a tendency to form specimens of huge size (gigantism). The abundance of emitted CO2 and nitrogen compounds is the likely cause of this. Additionally, the plants growing there are not attacked by insects. The heating of the ground liquidates the natural seed bank. After cooling, these places are seeded by species providing seeds at that very moment (pioneer species). Heated places on the dumps allow plant growth even in the middle of winter. As the seasonal vegetation cycle is disturbed, plants may be found seeding, blooming and fruiting at the same time.

Publisher

Year

Volume

3

Issue

2

Pages

1-10

Physical description

Dates

published
2015-06-01
online
2015-06-27

Contributors

  • Faculty of Earth Sciences, University of Silesia, Będzińska Str. 60, 41-200 Sosnowiec, Poland
  • Faculty of Earth Sciences, University of Silesia, Będzińska Str. 60, 41-200 Sosnowiec, Poland
  • Faculty of Earth Sciences, University of Silesia, Będzińska Str. 60, 41-200 Sosnowiec, Poland
  • Faculty of Earth Sciences, University of Silesia, Będzińska Str. 60, 41-200 Sosnowiec, Poland

References

  • Alday J.G., Marrs R.H., Martínez-Ruiz C. 2012. Soil and vegetation development during early succession on restored coal wastes: a six-year permanent plot study. Plant Soil, 353: 305-320.[WoS]
  • Bian Z., Dong J., Lei S., Leng H., Mu S., Wang H. 2009. The impact of disposal and treatment of coal mining wastes on environment and farmland. Environ. Geol., 58: 625-634.[WoS]
  • Ciesielczuk J., Czylok A., Cebulak S. 2011. Sukcesja roślinna oraz gigantyzm obserwowane na palącej się hałdzie w Katowicach-Welnowcu,. Doc. Geonica 2011/1: 51-54.
  • Ciesielczuk J., Janeczek J., Cebulak S. 2013. Przebieg i przyczyny endogenicznego pożaru węgla kamiennego na zrekultywowanym składowisku odpadów komunalnych w Katowicach. Polish Geol. Rev., 61, 12: 764-772.
  • Davis M.G. 2013. Understanding Fire Regimes and the Ecological Effects of Fire. [in:] Belcher C.M. (ed.) Fire Phenomena and the Earth system, Chapter 6: 97-124, Wiley-Blackwell, Oxford, UK.
  • Doer S.H., Shakesby R.A. 2013. Fire and Land Surface. [in:] Belcher C.M. (ed.) Fire Phenomena and the Earth system, Chapter 8: 135-156, Wiley-Blackwell. Oxford, UK.
  • Fabiańska M., Ciesielczuk J., Kruszewski Ł., Misz-Kennan M., Blake D.R., Stracher G., Moszumańska I. 2013. Gaseous compounds and efflorescences generated in selfheating coal-waste dumps – a case study from the Upper- and Lower Silesian Coal Basins (Poland). Int. J. of Coal Geol., 116–117: 247–261.[WoS]
  • González-Alcaraz M.N., Egea C., María-Cervantes A., Jiménez-Cárceles F.J., Álvarez-Rogel J. 2011. Effects of eutrophic water flooding on nitrate concentrations in mine wastes. Ecol. Eng., 37: 693-702.[WoS]
  • Haeupler H., Muer T. 2000. Bildatlas der Farn- und Blütenpflanzen Deutschlands. Verlag Eugen Ulmer Stuttgart, 1-760.
  • Juwarkar A.A., Jambhulkar H.P. 2008. Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresource Technol., 99: 4732-4741.[WoS]
  • Klejnowska H. 1996. Projekt budowlany: Zagospodarowanie zielenią parkową terenu byłego składowiska odpadów komunalnych w Katowicach przy ul. Ludwika-Leopolda I i II etap. Biuro Usług Technicznych EKOTEST s.c., Gliwice.
  • Komnitsas K., Guo X., Li D. 2010. Mapping of soil nutrients in an abandoned Chinese coal mine and waste disposal site. Miner. Eng., 23: 610-635.[WoS]
  • Matuszkiewicz W. 2001. Przewodnik do oznaczania zbiorowisk roślinnych Polski. PWN Warszawa.
  • Midgley J.J., Bond J.W. 2013. Plants Adaptations to Fire. [in:] Belcher C.M. (ed.) Fire Phenomena and the Earth system, Chapter 7: 125-134, Wiley-Blackwell, Oxford, UK.
  • Mirek Z., Piękoś-Mirkowa H., Zając A., Zając M. 2002. Krytyczna lista roślin naczyniowych Polski. Polish Acad. of Sci., Kraków.
  • Misz-Kennan M., Fabiańska M.J. 2010. Thermal transformation of organic matter in coal waste from Rymer Cones (Upper Silesian Coal Basin, Poland). Int. J. of Coal Geol., 81: 343-358.[WoS]
  • Muszyński M., Skowroński A., Lipiarski I. 2006. Pstre utwory typu brekcji zawałowej z Kopalni Węgla Kamiennego „Marcel” (Górnośląskie Zagłębie Węglowe). Geologia: kwart. Akad. Górn.-Hutn. im. St. Staszica w Krakowie, 32, 3: 345-367.
  • Nadudvari A. 2014. Thermal mapping on self-heating zones on coal waste dumps in Upper Silesia (Poland). Int. J. of Coal Geol., 128-129: 47-54.[WoS]
  • Poberezhnaya T.M., Kopanina A.V. 2009. On Causes of Gigantism in Herbaceous Plants. Russian J. of Ecol., 40: 241-246.[WoS]
  • Prach K. 2013. Vegetation development in central European coal mining sites. [in:] Frouz J. (ed.) Soil Biota and Ecosystem Development in Post Mining Sites, Chapter 3: 38-52, Taylor & Francis: 1-316.
  • Rutkowski L. 1998. Klucz do oznaczania roślin naczyniowych Polski Niżowej. Wyd. Nauk. PWN.
  • Sekhohola L.M., Igbinigie E.E., Cowan K.A. 2013. Biological degradation and solubilization of coal. Biodegradation, 24: 305-3018.[Crossref][WoS]
  • Srivastava N.K., Ram L.C. Ebhin Masto R.E. 2014. Reclamation of overburden and lowland in coal mining area with flyash and selective plantation: A sustainable ecological approach. Ecol. Eng., 71: 479-489.[WoS]
  • Stracher G.B., Prakash A., Sokol E.V. (eds.) 2011. Coal and Peat Fires: A Global Perspective, Volume 1, Coal – geology and combustion, Elsevier: 1-358.
  • Stracher G.B., Prakash A., Sokol E.V. (eds.) 2013. Coal and Peat Fires: A Global Perspective, Volume 2, Photographs and multimedia tours, Elsevier: 1-554.
  • Stracher G.B., Prakash A., Sokol E.V. (eds.) 2015. Coal and Peat Fires: A Global Perspective, Volume 1, Case studies – coal fires, Elsevier: 1-786.
  • Szafer W., Kulczyński S., Pawłowski B. 1986. Rośliny polskie, cz. I i II. PWN, Warszawa.
  • Vanderporten A. 2001. The Syntrichia ruralis complex in Belgium, Cryptogamie Bryol., 22 (2): 71-84.[Crossref]
  • Wiegleb G., Felinks B. 2001. Primary succession in post-mining landscapes of Lower Lusatia – chance or necessity. Ecol. Eng., 17: 199-217.
  • Zhang L., Wang J., Bai Z., Lv CJ. 2015. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena, 128: 44–53.[WoS]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.doi-10_1515_environ-2015-0057
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.