Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2015 | 10 | 1 | 12-33

Article title

Energy efficiency model for small/medium geothermal heat pump systems

Title variants

Languages of publication

EN

Abstracts

EN
Heating application efficiency is a crucial point for saving energy and reducing greenhouse gas emissions. Today, EU legal framework conditions clearly define how heating systems should perform, how buildings should be designed in an energy efficient manner and how renewable energy sources should be used. Using heat pumps (HP) as an alternative “Renewable Energy System” could be one solution for increasing efficiency, using less energy, reducing the energy dependency and reducing greenhouse gas emissions. This scientific article will take a closer look at the different efficiency dependencies of such geothermal HP (GHP) systems for domestic buildings (small/medium HP). Manufacturers of HP appliances must document the efficiency, so called COP (Coefficient of Performance) in the EU under certain standards. In technical datasheets of HP appliances, these COP parameters give a clear indication of the performance quality of a HP device. HP efficiency (COP) and the efficiency of a working HP system can vary significantly. For this reason, an annual efficiency statistic named “Seasonal Performance Factor” (SPF) has been defined to get an overall efficiency for comparing HP Systems. With this indicator, conclusions can be made from an installation, economy, environmental, performance and a risk point of view. A technical and economic HP model shows the dependence of energy efficiency problems in HP systems. To reduce the complexity of the HP model, only the important factors for efficiency dependencies are used. Dynamic and static situations with HP´s and their efficiency are considered. With the latest data from field tests of HP Systems and the practical experience over the last 10 years, this information will be compared with one of the latest simulation programs with the help of two practical geothermal HP system calculations. With the result of the gathered empirical data, it allows for a better estimate of the HP system efficiency, their economic costs and benefits and their environmental impact.

Publisher

Year

Volume

10

Issue

1

Pages

12-33

Physical description

Dates

published
2015-06-01
online
2015-06-16

Contributors

  • Bucharest University of Economic Studies, Bucharest, Romania
  • Bucharest University of Economic Studies, Bucharest, Romania

References

  • Ala-Risku T. and Kopri E. (2008), “Life cycle costing: a review of published case studies”, Managerial Auditing Journal, Vol. 23, No. 3, pp. 240 - 261.
  • Baehr, H.D. and Kabelac, S. (2006), Thermodynamik, 13th Edition, Springer, Berlin.
  • BAFA, (2015), Erneuerbare Energien Wärmepumpen mit Prüfzertifikat des COPWertes, available online at: www.bafa.de/bafa/de/energie/erneuerbare_energien/publikationen/energie_ee_waermepumpe_liste_ab_2013.pdf (Accessed on January 15, 2015).
  • Bayer, P., Saner, D., Bolay, S., Rybach, L. and Blum, P. (2012), “Greenhouse gas emission savings of ground source heat pump systems in Europe: A review”, Renew. Sustain. Energy Rev., Vol. 16, pp. 1256-1267.
  • BDH (2012), Positionspapier Smart Grid und Smart Market, Bundesverband Wärmepumpe.
  • BMU (2012), Policy Report Contribution of Energy Efficiency Measures to Climate Protection within the European Union until 2050, BMU, Berlin.
  • Bohne, D. (2014), Technischer Ausbau von Gebäuden, 10th Edition, Kohlhammer, Stuttgart.
  • Böhm R. (2010), Heiße Luft - nach Kopenhagen. Reizwort Klimawandel. Fakten - Ängste Geschäfte, 2nd Edition, Va Bene, Klosterneuburg.
  • Buchal C. and Schönwiese, C. (2010), Klima. Die Erde und ihre Atmosphäre im Wandel der Zeiten, Helmholtz-Gemeinschaft, Berlin.
  • BWP (2015), EU-Energielabel wird wichtigstes Verkaufsargument für Wärmepumpen, Jasmin Herbell (Pressesprecherin BWP), Berlin.
  • Coenenberg, A.G. (2009), Einführung in das Rechnungswesen, 3rd Edition, Schäffer- Poeschel, Stuttgart.
  • Crowley, T.J. (2000), “Causes of climate change over the past 1000 years”, Science, Vol. 289, pp 270-277.
  • Cube von, H.L., Steimle, F., Lotz, H. and Kunis, J. (1997), Lehrbuch der Kältetechnik, Band1, 4th Edition, C.F.Müller Verlag, Heidelberg.
  • Dimplex (2015), Data Sheet SI 11T GHP 11 kW.
  • Edenhofer, O. and Sokona, Y. (coord.), (2011), “Summary for Policy Makers”, in: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlomer, S., v. Stechow, C. (Eds), pp. 3-26, Cambridge University Press, Cambridge.
  • EU (2009), Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, Official Journal of the European Union, L 140/16, 2009.
  • EU (2010a), Energy savings 2020 - How to triple the impact of energy saving policies in Europe, Ecofys and Fraunhofer ISI.
  • EU (2010b), Roadmap 2050, ECF, The Netherlands.
  • EU (2012a), Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, Official Journal of the European Union, L 315, 14.11.2012, pp. 1-56.
  • Pardo Garcia, N., Vatopoulos, K., Krook-Riekkola, A., Perez Lopez, A. and Olsen, L. (2012), Best available technologies for the heat and cooling market in the European Union, Publications Office of the European Union, The Netherlands.
  • EU (2012b), Building directive, Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings by establishing a comparative methodology framework for calculating cost-optimal levels of minimum energy performance requirements for buildings and building elements, 16 January 2012.
  • EU (2013a), Commission Decision of 1 March 2013 establishing the guidelines for Member States on calculating renewable energy from heat pumps from different heat pump technologies.
  • EU (2013b), Regulation (EU) No 811/2013 of 18 February 2013, The energy labelling of space heaters, combination heaters, packages of space heater, temperature control and solar device and packages of combination heater, temperature control and solar device.
  • EU (2014a), Communication from the Commission to the European Parliament and the Council on Energy Efficiency and its contribution to energy security and the 2030 Framework for climate and energy policy, Brussels, 23.7.2014COM(2014) 520 final.
  • EU (2014b), EU Energy in Figures, Statistical Pocketbook, Publications Office of the European Union, Luxembourg.
  • FAWA, (2004), Feldanalyse von Wärmepumpenanlagen FAWA 1996-2003, Max Ehrbar.
  • Gege, M. and Heib, M. (2011), Erfolgsfaktor Energieeffizienz, 1st Edition, oekom, München.
  • Günter, M. (2015), Energieeffizienz durch Erneuerbare Energien: Möglichkeiten, Potenziale, Systeme, Springer, Berlin.
  • IEA (2013), International Energy Agency: World Energy Outlook
  • Inkenberry, J.G. (1986), "The The Irony of State Strength: Comparative Responses to the Oil Shocks in the 1970s", International Organization, Vol. 40, pp.105-137.
  • IPCC (2014), Climate change 2014, 5th edition, IPCC, Geneva.
  • Günther, D. Miara, M., Langner, R., Helmling, S. and Wapler, J. (2014), "WP Monitor“ Feldmessung von Wärmepumpenanlagen, ISE, Freiburg.
  • Jeong, H. (2014), “A novel defrosting method using heat energy dissipated by the compressor of an air source heat pump”, Applied Energy, Vol. 133, 15 November 2014, pp. 101-111.
  • Khan, B.H. (2006), Non-conventional Energy Resources, Tata McGraw-Hill Education, New Delhi.
  • Klöpffer, W. (2009), Ökobilanz, Wiley, Weihnheim.
  • Kohler, St. and Bonekamp, B. (2008), "Der Wärmepumpen-Berater“ und "PlanungsHilfe Wärmepumpen“, Deutsche Energie-Agentur, Berlin.
  • Königsdorff, R. (2011), Oberflächennahe Geothermie für Gebäude: Grundlagen und Anwendungen zukunftsfähiger Heizung und Kühlung, IRB2011.
  • Lahr (2014), Agende Energie, available online at: www.agenda-energielahr.de/WP-Ph2_Uebersicht.html (Accessed January 12, 2015).
  • Lahr (2011), Feldtest Phase 1 von 2006 - 2008: "Normale Wärmepumpensysteme.
  • MacKay, D. (2009), Sustainable energy without the hot air, UIT Cambridge, Cambridge.
  • Merrill, K.R. (2007), The Oil Crisis of 1973-1974: A Brief History with Documents, Bedford/St. Martin’s.
  • Miara, M., (2013), Wärmepumpen, Frauenhofer IRB Verlag.
  • Mojic, I., Haler, M. and Frank, E. (2014), “Heat Pump System with Uncovered and Free Ventilated Covered Collectors in Combination with a Small Ice Storage Energy”, Energy Procedia, Volume 48, pp. 608-617.
  • Nast, M. (2014), Strukturwandel für die Energiewende im Wärmesektor
  • Nordmann, R., (2012): D2.5/D3.5. Position paper on heat pump SPF.
  • Nowak, T., (2013): Future Perspectives for Heat Pumps in Europe, Thomas Nowak | EHPA
  • DTU International Energy Conference 10. - 12.9.2013
  • Park, H., (2013): The cooling seasonal performance factor of a hybrid groundsource heat pump with parallel and serial configurations, Original Research Article, Applied Energy, Volume 102, February 2013, Pages 877-884[Crossref]
  • Park, H., Lee, J., (2009): Comprehensive exergy analysis of a ground-source heat pump system for both building heating and cooling modes, Original Research Article, Applied Energy, Volume 86, Issue 12, December 2009, Pages 2560-2565
  • Park, Y.S., (2014): Heat pump control method based on direct measurement of evaporation pressure to improve energy efficiency and indoor air temperature stability at a low cooling load condition, Original Research Article, Applied Energy, Volume 132, 1 November 2014, Pages 99-107, Young Sung Park
  • Pehnt, M., (2010): Energieeffizienz, 1 Aufl., Heielberg, 2010
  • Rasmussen, P. (2011): Energy labelling and ecodesign requirements for heat pumps, Danish Technological Institute, Dec. 2011
  • Rebitzer G, Seuring S. ,(2003): Methodology and Application of Life Cycle Costing. International Journal of LCA 8(2): 110-111
  • Rees, S. ,(2014): National Deployment of Domestic Geothermal Heat Pump Technology: Observations on the UK Experience 1995-2013, Energy Journal Energies 2014, 7, 5460-5499
  • Reisner, K., (2013): Fachwissen Kältetechnik: Eine Einführung für die Aus- und Weiterbildung, 5. Aufl., 2013
  • RHPP, (2014): Preliminary data from the RHPP heat pump metering programme, Chris Wickins, Principal Engineer, RHI Team, Department of Energy and Climate Change
  • Rogall, H., (2000): Bausteine einer zukunftsfähigen Umwelt- und Wirtschaftspolitik, Berlin 2000
  • SANCHEZ, J., A. (2014): ENHANCING THE QUALITY OF GROUND COUPLED HEAT PUMPS, dissertation, ETH Zürich
  • Schneidewind, U., (2011): Nachhaltige Entwicklung Nr.2/2011 UNEP / Wuppertal Institute Collaborating
  • Schröder, T., Lüke, B. (2012): Wärmequellen für Wärmepumpen, Dortmunder Buch, Dortmund 2013
  • Schulz, M. (2013) Die neue Heizung, Freiburg 2013Self, S., (2013): Geothermal heat pump systems: Status review and comparison with other heating options, Original Research Article, Applied Energy, Volume 101, January 2013, Pages 341-348, Stuart J. Self, Bale V. Reddy, Marc A. Rosen
  • Staiger, R., (2004): German Patent and trademark office, Wärmetauscher- Vorrichtung für den Kältekreislauf einer Wärmepumpe DE 10306148 B3
  • Staiger, R., (2005): German Patent and trademark office, Wärmepumpen- Vorrichtung DE 10339066 A1
  • Staiger, R., (2006) German Patent and trademark office,Wärmepumpen- Vorrichtung DE 10339066 B4
  • Staiger, R., (2015): Measurement Protocols GHP south of Germany, E²Sys GmbG, RS Solar
  • Tanţău A., Regneala H., Coraş E. (2014) Layout design as a risk driver for energy efficiency of photovoltaic power systems, The International Journal of Management Science and Information Technology (IJMSIT), Issue11, Jan-Mar 2014, 124 - 151, ISSN 1923-0265, www.naisit.org
  • Tiator, I. and Schenker, M. (2013), Wärmepumpen, Wärmepumpenanlagen, 2nd Edition, Vogel Business Media, Wurzburg.
  • Tonert, M., Bach, E., Bertrand, P., Biewerth, W. and Herr, H. (2013), Wärme, Kälte, Klima, 6th Edition, Europa-Lehrmittel.
  • UBA (2008): Elektrische Wärmepumpen - eine erneuerbare Energie? Jens Schuberth, Helmut Kaschenz,
  • UKtrust, (2010): Getting warmer: a field trial of heat pumps, The Energy Saving Trust, Simon Green, Project Director, Jaryn Bradford, Project Manager
  • UKTrust, (2012): Detailed analysis from the first phase of the Energy Saving Trust’s heat pump field trial, Dr. Penny Dunbabin, Chris Wickins, 2012
  • UKTrust, (2013): the heat is on: phase 2 heat pump field trials, Jaryn Bradford, project director, Tom Byrne, project manage
  • Veith, H. (2011): Grundkursus der Kältetechnik, 10 Aufl., 2011
  • Wang, F. (2015): Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification, Applied Energy Volume 139, 1 February 2015, Pages 212-219, Fenghao Wang , Zhihua Wang, Yuxin Zheng , Zhang Lin, Pengfei ao, Chao Huan, Tian Wang
  • WPZ, (2014a): Prüfresultate Luft/Wasser-Wärmepumpen basierend auf der EN 14511:2013 und EN 14825:2013, 06.10.2014
  • WPZ, (2014b): Prüfresultate Sole/Wasser- und Wasser/Wasser-Wärmepumpen basierend auf der EN 14511:2011, 11.06.2014
  • WPZ, (2014c): Prüfresultate Warmwasser-Wärmepumpen (Wärmepumpenboiler) basierend auf der EN 16147:2011, 19.01.2015
  • Yergin, D., (2008): The Prize: The Epic Quest for Oil, Money, and Power. New York: Simon and Schuster
  • Zogg, M., (2008): History of Heat Pumps, 2008, Department of Environment, Transport, Energy and Communications DETEC, Swiss Federal Office of Energy SFOE, Section Energy Efficiency and Renewable Energies

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.doi-10_1515_mmcks-2015-0002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.