Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2016 | 47 | 1 | 73-80

Article title

No Spearman’s Law of Diminishing Returns for the working memory and intelligence relationship

Content

Title variants

Languages of publication

EN

Abstracts

EN
Spearman’s Law of Diminishing Returns (SLODR) holds that correlation between general (g)/fluid (Gf) intelligence factor and other cognitive abilities weakens with increasing ability level. Thus, cognitive processing in low ability people is most strongly saturated by g/Gf, whereas processing in high ability people depends less on g/Gf. Numerous studies demonstrated that low g is more strongly correlated with crystallized intelligence/creativity/processing speed than is high g, however no study tested an analogous effect in the case of working memory (WM). Our aim was to investigate SLODR for the relationship between Gf and WM capacity, using a large data set from our own previous studies. We tested alternative regression models separately for three types of WM tasks that tapped short-term memory storage, attention control, and relational integration, respectively. No significant SLODR effect was found for any of these tasks. Each task shared with Gf virtually the same amount of variance in the case of low- and high-ability people. This result suggests that Gf and WM rely on one and the same (neuro)cognitive mechanism.

Year

Volume

47

Issue

1

Pages

73-80

Physical description

Dates

published
2016-04-01
online
2016-05-14

Contributors

  • Institute of Computer Science and Computational Mathematics, Jagiellonian University in Krakow, Łojasiewicza 6, 30-348 Krakow, Poland
  • Institute of Computer Science and Computational Mathematics, Jagiellonian University in Krakow, Łojasiewicza 6, 30-348 Krakow, Poland
  • Institute of Philosophy, Jagiellonian University in Krakow, Grodzka 52, 31-044 Krakow, Poland

References

  • Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19, 716-723.[Crossref]
  • Burgess, G. C., Gray, J. R., Conway, A. R. A., & Braver, T. S. (2011). Neural mechanisms of interference control underlie the relationship between fluid intelligence and working memory span. Journal of Experimental Psychology: General, 140, 674-692.
  • Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices test. Psychological Review, 97, 404-431.
  • Chuderski, A. (2013). When are fluid intelligence and working memory isomorphic and when are they not? Intelligence, 41, 244-262.[Crossref]
  • Chuderski, A. (2014). Relational integration task explains fluid reasoning above and beyond other working memory tasks. Memory & Cognition, 42, 448-463.[WoS][Crossref]
  • Chuderski, A., & Andrelczyk, K. (2015). From neural oscillations to complex cognition: Simulating the effect of the theta-to-gamma cycle length ratio on analogical reasoning. Cognitive Psychology, 76, 78-102.[WoS]
  • Chuderski, A., Taraday, M., Nęcka, E., & Smoleń, T. (2012). Storage capacity explains fl uid intelligence while executive control does not. Intelligence, 40, 278-295.[Crossref][WoS]
  • Cleveland, W. S. (1981). LOWESS: A program for smoothing scatterplots by robust locally weighted regression. The American Statistician, 35, 54.
  • Colom, R., Abad, F. J., Quiroga, M. A., Shih, P. C., & Flores-Mendoza, C. (2008). Working memory and intelligence are highly related constructs but why? Intelligence, 36, 584-606.[WoS][Crossref]
  • Conway, A. R. A., Getz, S. J., Macnamara, B., & Engel de Abreu, P. M. J. (2011). Working memory and fl uid intelligence: A multi-mechanism view. In Sternberg, R. J., & Kaufman, S. B. (Eds.), The Cambridge Handbook of Intelligence. Cambridge, UK: Cambridge University Press.
  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87-114.[Crossref]
  • Cowan, N., Fristoe, N. M., Elliott, E. M., Brunner, R. P., & Saults, J. S. (2006). Scope of attention, control of attention, and intelligence in children and adults. Memory & Cognition, 34, 1754-1768.[Crossref]
  • Deary, I. J. (2012). Intelligence. In S. T. Fiske, D. L. Schacter, & S. E. Taylor (Eds.), Annual review of psychology, Vol. 63. (pp. 453-482).[WoS][Crossref]
  • Der, G., & Deary, I. J. (2003). IQ, reaction time and the differentiation hypothesis. Intelligence, 31, 491-503.[Crossref]
  • Detterman, D. K., & Daniel, M. H. (1989). Correlations of mental tests with each other and with cognitive variables are highest for low IQ groups. Intelligence, 13, 349-359.[Crossref]
  • Evans, M. G. (1999). On the asymmetry of g. Psychological Reports, 85, 1059-1069.
  • Goodwin, G. P., & Johnson-Laird, P. N. (2005). Reasoning about relations. Psychological Review, 112, 468-493.
  • Halford, G. S., Baker, R., McCredden, J. E., & Bain, J. D. (2005). How many variables can humans process? Psychological Science, 16, 70-76.[Crossref]
  • Halford, G. S., Wilson, W. H., & Phillips, S. (1998). Processing capacity defined by relational complexity: Implications for comparative, developmental, and cognitive psychology. Behavioral and Brain Sciences, 21, 803-864.[Crossref]
  • Hamel, R., & Schmittmann, V. D. (2006). The 20-minute version as a predictor of The Raven Advanced Progressive Matrices Test. Educational and Psychological Measurement, 66, 1039-1046.
  • Hartmann, P. H., & Reuter, M. (2006). Spearman’s “Law of Diminishing Returns” tested with two methods. Intelligence, 34, 47−62.[Crossref]
  • Hummel, J. E., & Holyoak, K. J. (2003). A symbolic-connectionist theory of relational inference and generalization. Psychological Review, 110, 220-264.[Crossref]
  • Jauk, E., Benedek, M., Dunst, B., & Neubauer, A. (2013). The relationship between intelligence and creativity: New support for the threshold hypothesis by means of empirical breakpoint detection. Intelligence, 41, 212-221.[WoS][Crossref]
  • Jensen, A. R. (2003). Regularities in Spearman’s law of diminishing returns. Intelligence, 31, 95-105.[Crossref][WoS]
  • Kane, M. J., & Engle, M. J. (2002). The role of prefrontal cortex in working- memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9, 637-671.[Crossref]
  • Kane, M. J., Hambrick, D. Z., & Conway, A. R. A. (2005). Working memory capacity and fluid intelligence are strongly related constructs: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131, 66-71.
  • MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7, 19-40.
  • Martínez, K., Burgaleta, M., Román, F. J., Escorial, S., Shih, P. C., Quiroga, Mª A., & Colom, R. (2011). Can fl uid intelligence be reduced to ‹simple› short-term storage? Intelligence, 39, 473-480.[WoS]
  • McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37, 1-10.[Crossref]
  • Oberauer, K., Schultze, R., Wilhelm, O., & Süß, H.-M. (2005). Working memory and intelligence - their correlation and their relation: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131, 61-65.
  • Oberauer, K., Süß, H.-M., Wilhelm, O., & Sander, N. (2007). Individual differences in working memory capacity and reasoning ability. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory (pp. 49-75). Oxford: Oxford University Press.
  • Oberauer, K., Süß, H.-M., Wilhelm, O., & Wittman, W. W. (2008). Which working memory functions predict intelligence? Intelligence, 36, 641-652.[WoS][Crossref]
  • Orzechowski, J., & Chuderski, A. (2007). Test analogii obrazkowych. Unpublished manuscript.
  • Ragni, M., & Knauff, M. (2013). A theory and a computational model of spatial reasoning with preferred mental models. Psychological Review, 120, 561-588.[WoS]
  • Raven, J. C., Court, J. H., & Raven, J. (1983). Manual for Raven’s Progressive Matrices and vocabulary scales (Section 4: Advanced Progressive Matrices). London: H. K. Lewis.
  • Reynolds, M. R., & Keith, T. Z. (2007). Spearman’s law of diminishing returns in hierarchical models of intelligence for children and adolescents. Intelligence, 35, 267-281.[Crossref]
  • Reynolds, M. R., Keith, T. Z., & Beretvas, S. N. (2010). Use of factor mixture modeling to capture Spearman’s law of diminishing returns. Intelligence, 38, 231-241.[WoS][Crossref]
  • Snow, R. E., Kyllonen, P. C., & Marshalek, B. (1984). The topography of ability and learning correlations. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 2, pp. 47-103). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Spearman, C. E. (1927). The abilities of man. London: Macmillan.
  • Unsworth, N., Redick, T. S., Lakey, C. E., & Young, D. L. (2010). Lapses in sustained attention and their relation to executive control and fluid abilities: An individual differences investigation. Intelligence, 38, 111-122.[Crossref][WoS]
  • Unsworth, N., Spillers, G. J., Brewer, G. A., & McMillan, B. (2011). Attention control and the antisaccade task. A response time distribution analysis. Acta Psychologica, 137, 90-100.[WoS]
  • Vigneau, F., Caissie, A. F., & Bors, D. A. (2006). Eye-movement analysis demonstrates strategic influence on intelligence. Intelligence, 34, 261-272.[Crossref]
  • Viskontas, I. V., Holyoak, K. J., & Knowlton, B. J. (2005). Relational integration in older adults. Thinking and Reasoning, 11, 390-410.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.doi-10_1515_ppb-2016-0008
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.